Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 64(5): 888-899, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818141

RESUMO

Molecular chaperones govern protein homeostasis, being allied to the beginning (folding) and ending (degradation) of the protein life cycle. Yet, the Hsp90 system primarily associates with native factors, including fully assembled complexes. The significance of these connections is poorly understood. To delineate why Hsp90 and its cochaperone p23 interact with a mature structure, we focused on the RSC chromatin remodeler. Both Hsp90 and p23 triggered the release of RSC from DNA or a nucleosome. Although Hsp90 only freed bound RSC, p23 enhanced nucleosome remodeling prior to discharging the complex. In vivo, RSC mobility and remodeling function were chaperone dependent. Our results suggest Hsp90 and p23 contribute to proteostasis by chaperoning mature factors through energetically unfavorable events, thereby maintaining the cellular pool of active native proteins. In the case of RSC, p23 and Hsp90 promote a dynamic action, allowing a limited number of remodelers to effectively maintain chromatin in a pliable state.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Deleção de Genes , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/genética , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
Mol Cell ; 43(2): 229-41, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777812

RESUMO

In parallel with evolutionary developments, the Hsp90 molecular chaperone system shifted from a simple prokaryotic factor into an expansive network that includes a variety of cochaperones. We have taken high-throughput genomic and proteomic approaches to better understand the abundant yeast p23 cochaperone Sba1. Our work revealed an unexpected p23 network that displayed considerable independence from known Hsp90 clients. Additionally, our data uncovered a broad nuclear role for p23, contrasting with the historical dogma of restricted cytosolic activities for molecular chaperones. Validation studies demonstrated that yeast p23 was required for proper Golgi function and ribosome biogenesis, and was necessary for efficient DNA repair from a wide range of mutagens. Notably, mammalian p23 had conserved roles in these pathways as well as being necessary for proper cell mobility. Taken together, our work demonstrates that the p23 chaperone serves a broad physiological network and functions both in conjunction with and sovereign to Hsp90.


Assuntos
Núcleo Celular/metabolismo , Chaperonas Moleculares/genética , Sequência de Aminoácidos , Citosol/metabolismo , Reparo do DNA/fisiologia , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Thorac Oncol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583771

RESUMO

INTRODUCTION: Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy. METHODS: Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors. RESULTS: Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment. CONCLUSIONS: NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.

4.
Biochim Biophys Acta ; 1823(3): 668-73, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21889547

RESUMO

Cellular environments are highly complex and contain a copious variety of proteins that must operate in unison to achieve homeostasis. To guide and preserve order, multifaceted molecular chaperone networks are present within each cell type. To handle the vast client diversity and regulatory demands, a wide assortment of chaperones are needed. In addition to the classic heat shock proteins, cochaperones with inherent chaperoning abilities (e.g., p23, Hsp40, Cdc37, etc.) are likely used to complete a system. In this review, we focus on the HSP90-associated cochaperones and provide evidence supporting a model in which select cochaperones are used to differentially modulate target proteins, contribute to combinatorial client regulation, and increase the overall reach of a cellular molecular chaperone network. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais
5.
PNAS Nexus ; 2(4): pgad115, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091547

RESUMO

The androgen receptor is a key regulator of prostate cancer and the principal target of current prostate cancer therapies collectively termed androgen deprivation therapies. Insensitivity to these drugs is a hallmark of progression to a terminal disease state termed castration-resistant prostate cancer. Therefore, novel therapeutic options that slow progression of castration-resistant prostate cancer and combine effectively with existing agents are in urgent need. We show that JG-98, an allosteric inhibitor of HSP70, re-sensitizes castration-resistant prostate cancer to androgen deprivation drugs by targeting mitochondrial HSP70 (HSPA9) to suppress aerobic respiration. Rather than impacting androgen receptor stability as previously described, JG-98's primary effect is inhibition of mitochondrial translation, leading to disruption of electron transport chain activity. Although functionally distinct from HSPA9 inhibition, direct inhibition of the electron transport chain with a complex I or II inhibitor creates a similar physiological state capable of re-sensitizing castration-resistant prostate cancer to androgen deprivation therapies. These data identify a significant role for HspA9 in mitochondrial ribosome function and highlight an actionable metabolic vulnerability of castration-resistant prostate cancer.

6.
Cell Stress Chaperones ; 28(1): 1-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602710

RESUMO

The Second International Symposium on Cellular and Organismal Stress Responses took place virtually on September 8-9, 2022. This meeting was supported by the Cell Stress Society International (CSSI) and organized by Patricija Van Oosten-Hawle and Andrew Truman (University of North Carolina at Charlotte, USA) and Mehdi Mollapour (SUNY Upstate Medical University, USA). The goal of this symposium was to continue the theme from the initial meeting in 2020 by providing a platform for established researchers, new investigators, postdoctoral fellows, and students to present and exchange ideas on various topics on cellular stress and chaperones. We will summarize the highlights of the meeting here and recognize those that received recognition from the CSSI.


Assuntos
Chaperonas Moleculares , Estresse Fisiológico , Humanos , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares/fisiologia , Estresse Fisiológico/fisiologia
7.
Cell Chem Biol ; 29(3): 490-501.e4, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108506

RESUMO

Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteostase , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
FEMS Microbiol Lett ; 281(1): 98-107, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18279332

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a water- and food-borne pathogen that causes hemorrhagic colitis. EHEC uses a type III secretion system (T3SS) to translocate effector proteins that subvert host cell function. T3SS-substrates encoded outside of the locus of enterocyte effacement are important to E. coli pathogenesis. We discovered an EHEC secreted protein, NleF, encoded by z6020 in O-island 71 of E. coli EDL933 that we hypothesized to be a T3SS substrate. Experiments are presented that probe the function of NleF and its role in virulence. Immunoblotting of secreted and translocated proteins suggest that NleF is secreted by the T3SS and is translocated into host cells in vitro where it localizes to the host cytoplasm. Infection of HeLa cells with E. coli possessing or lacking nleF and transient expression of NleF-GFP via transfection did not reveal a significant role for NleF in several assays of bacterial adherence, host cytoskeletal remodeling, or host protein secretion. However, competitive coinfection of mice with Citrobacter rodentium strains possessing or lacking nleF suggested a contribution of NleF to bacterial colonization. Challenge of gnotobiotic piglets also revealed a role for NleF in colonization of the piglet colon and rectoanal junction.


Assuntos
Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/metabolismo , Animais , Células COS , Chlorocebus aethiops , Citoplasma/química , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/química , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Feminino , Trato Gastrointestinal/microbiologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Suínos , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética
9.
Curr Protein Pept Sci ; 15(3): 216-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24694369

RESUMO

Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo , Humanos , Transcrição Gênica
10.
Vet Microbiol ; 164(1-2): 164-70, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23434013

RESUMO

The human pathogens enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC), as well as the mouse pathogen Citrobacter rodentium encode type III secretion system (T3SS) effector proteins to promote their survival in the infected host. The mechanisms of action and the host targets of T3SS effectors are under active investigation because of their importance to bacterial virulence. The non-locus of enterocyte effacement (LEE)-encoded protein F, NleF, contributes to E. coli and C. rodentium colonization of piglets and mice, respectively. Here we sought to characterize the host binding partners of NleF. Using a yeast two-hybrid screen, we identified Tmp21, a type-I integral membrane protein and COPI-vesicle receptor involved in trans-Golgi network function, as an NleF-binding partner. We confirmed this interaction using immunoprecipitation and bimolecular fluorescence complementation (BiFC). We expressed a temperature-sensitive vesicular stomatitis virus glycoprotein (tsVSVG) to monitor protein trafficking and determined that NleF slows the intracellular trafficking of tsVSVG from the endoplasmic reticulum to the Golgi.


Assuntos
Citrobacter rodentium/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Camundongos , Proteínas de Transporte Nucleocitoplasmático , Transporte Proteico , Suínos , Técnicas do Sistema de Duplo-Híbrido
11.
Nat Struct Mol Biol ; 16(7): 711-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525972

RESUMO

Distinct protein assemblies are nucleated at telomeric DNA to both guard the ends from damage and lengthen the DNA after replication. In yeast, Cdc13 recruits either Stn1-Ten1 to form a protective cap or the telomerase holoenzyme to extend the DNA. We have established an in vitro yeast telomere system in which Stn1-Ten1-unextendable or telomerase-extendable states can be observed. Both assemblies are Cdc13 dependent, as the Cdc13 C-terminal region supports Stn1-Ten1 interactions and the N-terminal region contains a telomerase-activation function. Notably, the yeast Hsp90 chaperone Hsp82 mediates the switch between the telomere capping and extending structures by modulating the DNA binding activity of Cdc13. Taken together, our data show that the Hsp82 chaperone facilitates telomere DNA maintenance by promoting transitions between two operative complexes and by reducing the potential for binding events that would otherwise block the assembly of downstream structures.


Assuntos
DNA Fúngico/química , Proteínas de Choque Térmico HSP90/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Telômero/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/metabolismo , Ativação Enzimática , Proteínas de Choque Térmico HSP90/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA