Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Microbiol ; 20(1): 9, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924162

RESUMO

After publication of our article [1] it came to our notice that the source of the sequence for the control plasmid, pNeo (Materials and methods: Controls) was incorrectly stated as AB094461. The correct accession number is AB074461. The authors apologize for any confusion this may have caused.

2.
BMC Microbiol ; 19(1): 199, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462211

RESUMO

BACKGROUND: Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen. It is widely distributed in Ixodes ricinus ticks in Europe, but knowledge of its distribution in Norway, where I. ricinus reaches its northern limit, is limited. In this study we have developed a real time PCR test for Ca. N. mikurensis and used it to investigate the distribution of Ca. N. mikurensis in Norway. RESULTS: Real time PCR targeting the groEL gene was developed and shown to be highly sensitive. It was used to detect Ca. N. mikurensis in 1651 I. ricinus nymphs and adults collected from twelve locations in Norway, from the eastern Oslo Fjord in the south to near the Arctic Circle in the north. The overall prevalence was 6.5% and varied locally between 0 and 16%. Prevalence in adults and nymphs was similar, suggesting that ticks acquire Ca. N. mikurensis predominantly during their first blood meal. In addition, 123 larvae were investigated; Ca. N. mikurensis was not found in larvae, suggesting that transovarial transmission is rare or absent. Sequence analysis suggests that a single variant dominates in Norway. CONCLUSIONS: Ca. N. mikurensis is widespread and common in ticks in Norway and reaches up to their northern limit near the Arctic Circle. Ticks appear to acquire Ca. N. mikurensis during their first blood meal. No evidence for transovarial transmission was found.


Assuntos
Anaplasmataceae/isolamento & purificação , Chaperonina 60/genética , Ixodes/microbiologia , Larva/microbiologia , Ninfa/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Regiões Árticas , Noruega
3.
Euro Surveill ; 24(9)2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30862329

RESUMO

BackgroundTick-borne diseases have become increasingly common in recent decades and present a health problem in many parts of Europe. Control and prevention of these diseases require a better understanding of vector distribution.AimOur aim was to create a model able to predict the distribution of Ixodes ricinus nymphs in southern Scandinavia and to assess how this relates to risk of human exposure.MethodsWe measured the presence of I. ricinus tick nymphs at 159 stratified random lowland forest and meadow sites in Denmark, Norway and Sweden by dragging 400 m transects from August to September 2016, representing a total distance of 63.6 km. Using climate and remote sensing environmental data and boosted regression tree modelling, we predicted the overall spatial distribution of I. ricinus nymphs in Scandinavia. To assess the potential public health impact, we combined the predicted tick distribution with human density maps to determine the proportion of people at risk.ResultsOur model predicted the spatial distribution of I. ricinus nymphs with a sensitivity of 91% and a specificity of 60%. Temperature was one of the main drivers in the model followed by vegetation cover. Nymphs were restricted to only 17.5% of the modelled area but, respectively, 73.5%, 67.1% and 78.8% of the human populations lived within 5 km of these areas in Denmark, Norway and Sweden.ConclusionThe model suggests that increasing temperatures in the future may expand tick distribution geographically in northern Europe, but this may only affect a small additional proportion of the human population.


Assuntos
Clima , Encefalite Transmitida por Carrapatos/epidemiologia , Ixodes/crescimento & desenvolvimento , Doença de Lyme/epidemiologia , Filogeografia , Infestações por Carrapato/epidemiologia , Animais , Dinamarca/epidemiologia , Meio Ambiente , Exposição Ambiental , Geografia , Humanos , Ixodes/fisiologia , Modelos Biológicos , Noruega/epidemiologia , Ninfa , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto , Países Escandinavos e Nórdicos , Estações do Ano , Suécia/epidemiologia
4.
Zoonoses Public Health ; 70(6): 473-484, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248739

RESUMO

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Prevalência , Estações do Ano , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Países Escandinavos e Nórdicos/epidemiologia , Conceitos Meteorológicos , Ninfa
5.
PLoS One ; 17(12): e0278642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480523

RESUMO

Rodent control is necessary to prevent damage and spread of disease, and the most common pesticides used for urban and rural rodent control are anticoagulant rodenticides. The aim of this present study was to present data on suspected exposure to rodenticides in humans and domestic animals in Norway based on inquiries to the Norwegian Poison Information Centre in the 16-year period from 2005 through 2020. A total of 4235 inquiries regarding suspected exposures to rodenticides were registered in the study period. Of these, 1486 inquiries involved humans and 2749 animals. Second generation anticoagulants were involved in 68% of human exposures and 79% of animal exposures. Dogs were the most frequent species involved in the animal exposures with 93% of the inquiries, while cats were second most frequent involved. Around 50% of the human inquiries concerned children at the age of 0-4 years. Only 2% of the cases were in the age group 10-19 years, while adults comprised 35% of the inquiries. Acute poisonings accounted for almost 100% of the inquiries among both humans and animals. The exposure was accidental in 99% of the animal exposures and in 85% of the human exposures. In humans, only 14 inquiries were regarding occupational related accidents. Misdeed or self-inflicted injury accounted for 15% of the human inquiries and were the cause of 79% of the severe poisonings. Severe poisoning was only assessed in 1% of the cases involving children under 5 years. In contrast, 17% of the inquiries concerning adults (≥20 years) were assessed as severe. Subsequently, to prevent human and animal rodenticide exposure, we urge the use of non-chemical methods such as sanitation, rodent proofing (a form of construction which will impede or prevent rodents access to or from a given space or building) and mechanical traps. Restricting the use of rodenticides to professional pest controllers (or other persons with authorisation), reinforcing high quality education of these persons, and securing compliance of the best codes of practice could be advocated to reduce accidental exposure to rodenticides in humans and animals.


Assuntos
Venenos , Rodenticidas , Criança , Humanos , Gatos , Animais , Cães , Pré-Escolar , Recém-Nascido , Lactente , Adolescente , Adulto Jovem , Adulto , Noruega/epidemiologia , Centros de Informação
6.
Sci Rep ; 10(1): 19376, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168841

RESUMO

Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.


Assuntos
Ixodes/fisiologia , Modelos Biológicos , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Humanos , Prevalência , Países Escandinavos e Nórdicos/epidemiologia
7.
Zoonoses Public Health ; 67(4): 370-381, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112526

RESUMO

The tick-borne encephalitis virus (TBEV), a zoonotic flaviviral infection, is endemic in large parts of Norway and Eurasia. Humans are mainly infected with TBEV via bites from infected ticks. In Norway, the main geographical distribution of ticks is along the Norwegian coastline from southeast (~59°N) and up to the southern parts of Nordland County (~65°N). In this study, we collected ticks by flagging along the coast from Østfold County to Nordland County. By whole-genome sequencing of the mitochondrial genome of Ixodes ricinus, the phylogenetic tree suggests that there is limited phylogeographic structure both in Norway and in Europe. The overall TBEV prevalence is 0.3% for nymphs and 4.3% for adults. The highest estimated TBEV prevalence in adult ticks was detected in Rogaland and Vestfold County, while for nymphs it is highest in Vestfold, Vest-Agder and Rogaland. The present work is one of the largest studies on distribution and prevalence of TBEV in ticks in Scandinavia, showing that the virus is wider distributed in Norway than previously anticipated.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Ixodes/virologia , Distribuição Animal , Animais , DNA Mitocondrial/genética , Ixodes/genética , Noruega , Filogeografia
8.
Sci Data ; 7(1): 238, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678090

RESUMO

Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.


Assuntos
Distribuição Animal , Ixodes/microbiologia , Animais , Ecossistema , Ninfa/microbiologia , Países Escandinavos e Nórdicos
10.
Sci Rep ; 9(1): 18144, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792296

RESUMO

Recently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tick-borne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65-0.69, R2 from 0.52-0.58) whereas adult tick models performed poorly (normalized RMSE from 0.94-0.96, R2 from 0.04-0.10). Testing the models on 2017 data produced good results with normalized RMSE values from 0.59-1.13 and R2 from 0.18-0.69. The resulting 2016 maps corresponded well with known tick abundance and distribution in Scandinavia. The models were highly influenced by temperature and vegetation, indicating that climate may be an important driver of I. ricinus distribution and abundance in Scandinavia. Despite varying results, the models predicted abundance in 2017 with high accuracy. The models are a first step towards environmentally driven tick abundance models that can assist in determining risk areas and interpreting human incidence data.


Assuntos
Ixodes , Modelos Biológicos , Animais , Ecossistema , Monitoramento Ambiental , Feminino , Florestas , Larva , Masculino , Densidade Demográfica , Países Escandinavos e Nórdicos , Tempo (Meteorologia)
11.
Parasit Vectors ; 12(1): 338, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288866

RESUMO

The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August-September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.


Assuntos
Dermacentor/fisiologia , Ixodes/fisiologia , Distribuição Animal , Animais , Vetores Artrópodes/microbiologia , Vetores Artrópodes/parasitologia , Babesiose/prevenção & controle , Dermacentor/microbiologia , Dermacentor/parasitologia , Cães , Encefalite Transmitida por Carrapatos/prevenção & controle , Monitoramento Epidemiológico , Pradaria , Ixodes/microbiologia , Ixodes/parasitologia , Noruega/epidemiologia , Ninfa/virologia , Países Escandinavos e Nórdicos/epidemiologia , Suécia/epidemiologia , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/prevenção & controle
12.
PLoS One ; 10(5): e0127555, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996999

RESUMO

Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring's feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions.


Assuntos
Percevejos-de-Cama , Temperatura Alta , Esterilização Reprodutiva , Adaptação Fisiológica , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA