Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 257(1): 9, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482224

RESUMO

MAIN CONCLUSION: Unlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C3 wild rice species Oryza coarctata, and C4 species Sporobolus anglicus and Urochondra setulosa. The leaf anatomy and ultrastructure of salt glands, pattern of salt excretion, gas exchange, accumulation of key photosynthetic enzymes, leaf water content and osmolality, and levels of some osmolytes, were compared when grown without salt, with 200 mM NaCl versus 200 mM KCl. Under salt treatments, there was little effect on the capacity for CO2 assimilation, while stomatal conductance decreased with a reduction in water loss by transpiration and an increase in water use efficiency. All three species accumulate compatible solutes but with drastic differences in osmolyte composition. Having high capacity for salt excretion, they have distinct structural differences in the salt excreting machinery. S. anglicus and U. setulosa have bicellular glands while O. coarctata has unique single-celled salt glands with a partitioning membrane system that are responsible for salt excretion rather than multiple hairs as previously suggested. The features of physiological responses and salt excretion indicate similar mechanisms are involved in providing tolerance and excretion of Na+ and K+.


Assuntos
Oryza , Tolerância ao Sal , Animais , Glândula de Sal , Água
2.
Photosynth Res ; 142(2): 153-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325077

RESUMO

The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological effect of transgenic maize (Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2 and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84 kPa and at different CO2 levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was 25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT. In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (ß) was ~6% and leaf net biochemical discrimination against 13CO2[Formula: see text] was ~ 2‰ lower than in WT. However, there were no differences in leaf net CO2 assimilation rates (A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced (~ 30%) and with a higher 13C composition [Formula: see text] in the PEPC-OE plants compared to WT. These data indicate that ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However, there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Oryza/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/metabolismo , Zea mays/enzimologia , Zea mays/genética , Respiração Celular , Malatos/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
J Exp Bot ; 70(10): 2773-2786, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30840760

RESUMO

The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in the light under photorespiratory and low photorespiratory conditions (i.e. 18.4 kPa and 1.84 kPa atmospheric O2 partial pressure, respectively), and in the dark. Under approximately current ambient O2 partial pressure (18.4 kPa pO2), the gdch knockdown plants showed an expected photorespiratory-deficient phenotype, with lower leaf net CO2 assimilation rates (A) than the wild-type. Additionally, under these conditions, the gdch knockdown plants had greater leaf net discrimination against 13CO2 (Δo) than the wild-type. This difference in Δo was in part due to lower 13C photorespiratory fractionation (f) ascribed to alternative decarboxylation of photorespiratory intermediates. Furthermore, the leaf dark respiration rate (Rd) was enhanced and the 13CO2 composition of respired CO2 (δ13CRd) showed a tendency to be more depleted in the gdch knockdown plants. These changes in Rd and δ13CRd were due to the amount and carbon isotopic composition of substrates available for dark respiration. These results demonstrate that impairment of the photorespiratory pathway affects leaf 13CO2 exchange, particularly the 13C decarboxylation fractionation associated with photorespiration.


Assuntos
Isótopos de Carbono/análise , Complexo Glicina Descarboxilase/genética , Oryza/genética , Fotossíntese , Proteínas de Plantas/genética , Respiração Celular , Complexo Glicina Descarboxilase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
4.
Photosynth Res ; 131(1): 51-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27450569

RESUMO

Salt-tolerant grasses of warm sub-tropical ecosystems differ in their distribution patterns with respect to salinity and moisture regimes. Experiments were conducted on CO2 fixation and light harvesting processes of four halophytic C4 grasses grown under different levels of salinity (0, 200 and 400 mM NaCl) under ambient environmental conditions. Two species were from a high saline coastal marsh (Aeluropus lagopoides and Sporobolus tremulus) and two were from a moderate saline sub-coastal draw-down tidal marsh (Paspalum paspalodes and Paspalidium geminatum). Analyses of the carbon isotope ratios of leaf biomass in plants indicated that carbon assimilation was occurring by C4 photosynthesis in all species during growth under varying levels of salinity. In the coastal species, with increasing salinity, there was a parallel decrease in rates of CO2 fixation (A), transpiration (E) and stomatal conductance (g s), with no effect on water use efficiency (WUE). These species were adapted for photoprotection by an increase in the Mehler reaction with an increase in activity of PSII/CO2 fixed accompanied by high levels of antioxidant enzymes, superoxide dismutase and ascorbate peroxidase. The sub-coastal species P. paspalodes and P. geminatum had high levels of carotenoid pigments and non-photochemical quenching by the xanthophyll cycle.


Assuntos
Fotossíntese , Poaceae/fisiologia , Paquistão , Salinidade
5.
J Exp Bot ; 68(2): 225-239, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986845

RESUMO

Portulacaceae is a family that has considerable diversity in photosynthetic phenotypes. It is one of 19 families of terrestrial plants where species having C4 photosynthesis have been found. Most species in Portulaca are in the alternate-leaved (AL) lineage, which includes one clade (Cryptopetala) with taxa lacking C4 photosynthesis and three clades having C4 species (Oleracea, Umbraticola and Pilosa). All three species in the Cryptopetala clade lack Kranz anatomy, the leaves have C3-like carbon isotope composition and they have low levels of C4 cycle enzymes. Anatomical, biochemical and physiological analyses show they are all C3-C4 intermediates. They have intermediate CO2 compensation points, enrichment of organelles in the centripetal position in bundle sheath (BS) cells, with selective localization of glycine decarboxylase in BS mitochondria. In the three C4 clades there are differences in Kranz anatomy types and form of malic enzyme (ME) reported to function in C4 (NAD-ME versus NADP-ME): Oleracea (Atriplicoid, NAD-ME), Umbraticola (Atriplicoid, NADP-ME) and Pilosa (Pilosoid, NADP-ME). Structural and biochemical analyses were performed on Pilosa clade representatives having Pilosoid-type leaf anatomy with Kranz tissue enclosing individual peripheral vascular bundles and water storage in the center of the leaf. In this clade, all species except P. elatior are NADP-ME-type C4 species with grana-deficient BS chloroplasts and grana-enriched M chloroplasts. Surprisingly, P. elatior has BS chloroplasts enriched in grana and NAD-ME-type photosynthesis. The results suggest photosynthetic phenotypes were probably derived from an ancestor with NADP-ME-type C4, with two independent switches to NAD-ME type.


Assuntos
Evolução Biológica , Fotossíntese , Folhas de Planta/metabolismo , Portulaca/metabolismo , Western Blotting , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Cotilédone/anatomia & histologia , Glicina Desidrogenase (Descarboxilante)/metabolismo , Malato Desidrogenase/metabolismo , Microscopia Eletrônica de Transmissão , NAD/metabolismo , Fenótipo , Folhas de Planta/ultraestrutura , Portulaca/ultraestrutura
6.
J Exp Bot ; 67(9): 2587-601, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26957565

RESUMO

Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed in the C4 cycle during capture of atmospheric CO2 by phosphoenolpyruvate carboxylase. In the C4-D domain, CO2 released in the C4 cycle via mitochondrial NAD-malic enzyme is refixed by Rubisco. Despite striking differences in origin and intracellular positioning of domains, these species show strong convergence in C4 developmental patterns. Both progress through a gradual developmental transition towards full C4 photosynthesis, with an associated increase in levels of photosynthetic enzymes. Analysis of longitudinal sections showed undeveloped domains at the leaf base, with Rubisco rbcL mRNA and protein contained within all chloroplasts. The two domains were first distinguishable in chlorenchyma cells at the leaf mid-regions, but still contained structurally similar chloroplasts with equivalent amounts of rbcL mRNA and protein; while mitochondria had become confined to just one domain (proto-C4-D). The C4 state was fully formed towards the leaf tips, Rubisco transcripts and protein were compartmentalized specifically to structurally distinct chloroplasts in the C4-D domains indicating selective regulation of Rubisco expression may occur by control of transcription or stability of rbcL mRNA. Determination of CO2 compensation points showed young leaves were not functionally C4, consistent with cytological observations of the developmental progression from C3 default to intermediate to C4 photosynthesis.


Assuntos
Chenopodiaceae/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Western Blotting , Chenopodiaceae/anatomia & histologia , Chenopodiaceae/citologia , Chenopodiaceae/metabolismo , Cloroplastos/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
7.
J Proteome Res ; 14(5): 2090-108, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25772754

RESUMO

Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.


Assuntos
Amaranthaceae/metabolismo , Cloroplastos/metabolismo , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Amaranthaceae/genética , Dióxido de Carbono/metabolismo , Compartimento Celular , Cloroplastos/classificação , Cloroplastos/genética , DNA Complementar/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Células Vegetais/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteômica
8.
J Exp Bot ; 66(22): 7347-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417023

RESUMO

The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol(-1) Rubisco active sites s(-1)), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed.


Assuntos
Ciclo do Carbono , Chenopodiaceae/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Substituição de Aminoácidos , Evolução Biológica , Carbono/química , Carbono/metabolismo , Cinética , Especificidade da Espécie
9.
BMC Plant Biol ; 14: 34, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24443986

RESUMO

BACKGROUND: In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. RESULTS: Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. CONCLUSIONS: Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression.


Assuntos
Amaranthaceae/metabolismo , Cloroplastos/metabolismo , Diferenciação Celular , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
10.
New Phytol ; 202(1): 220-232, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384064

RESUMO

Traditionally, it was believed that C(4) photosynthesis required two types of chlorenchyma cells to concentrate CO(2) within the leaf. However, several species have been identified that perform C(4) photosynthesis using dimorphic chloroplasts within an individual cell. The goal of this research was to determine how growth under limited light affects leaf structure, biochemistry and efficiency of the single-cell CO(2) -concentrating mechanism in Bienertia sinuspersici. Measurements of rates of CO(2) assimilation and CO(2) isotope exchange in response to light intensity and O(2) were used to determine the efficiency of the CO(2) -concentrating mechanism in plants grown under moderate and low light. In addition, enzyme assays, chlorophyll content and light microscopy of leaves were used to characterize acclimation to light-limited growth conditions. There was acclimation to growth under low light with a decrease in capacity for photosynthesis when exposed to high light. This was associated with a decreased investment in biochemistry for carbon assimilation with only subtle changes in leaf structure and anatomy. The capture and assimilation of CO(2) delivered by the C(4) cycle was lower in low-light-grown plants. Low-light-grown plants were able to acclimate to maintain structural and functional features for the performance of efficient single-cell C(4) photosynthesis.


Assuntos
Aclimatação/efeitos da radiação , Carbono/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Aclimatação/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Chenopodiaceae/citologia , Chenopodiaceae/fisiologia , Oxigênio/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
11.
Plant Physiol ; 161(1): 497-507, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23148078

RESUMO

The photosynthetic performance of plants is crucially dependent on the mobility of the molecular complexes that catalyze the conversion of sunlight to metabolic energy equivalents in the thylakoid membrane network inside chloroplasts. The role of the extensive folding of thylakoid membranes leading to structural differentiation into stacked grana regions and unstacked stroma lamellae for diffusion-based processes of the photosynthetic machinery is poorly understood. This study examines, to our knowledge for the first time, the mobility of photosynthetic pigment-protein complexes in unstacked thylakoid regions in the C3 plant Arabidopsis (Arabidopsis thaliana) and agranal bundle sheath chloroplasts of the C4 plants sorghum (Sorghum bicolor) and maize (Zea mays) by the fluorescence recovery after photobleaching technique. In unstacked thylakoid membranes, more than 50% of the protein complexes are mobile, whereas this number drops to about 20% in stacked grana regions. The higher molecular mobility in unstacked thylakoid regions is explained by a lower protein-packing density compared with stacked grana regions. It is postulated that thylakoid membrane stacking to form grana leads to protein crowding that impedes lateral diffusion processes but is required for efficient light harvesting of the modularly organized photosystem II and its light-harvesting antenna system. In contrast, the arrangement of the photosystem I light-harvesting complex I in separate units in unstacked thylakoid membranes does not require dense protein packing, which is advantageous for protein diffusion.


Assuntos
Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Clorofila A , Difusão , Eletroforese em Gel de Poliacrilamida , Recuperação de Fluorescência Após Fotodegradação , Luz , Lipídeos de Membrana/metabolismo , Células do Mesofilo/metabolismo , Microscopia Confocal , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transporte Proteico , Protoplastos/metabolismo , Sorghum/metabolismo , Sorghum/fisiologia , Especificidade da Espécie , Tilacoides/fisiologia , Zea mays/metabolismo , Zea mays/fisiologia
12.
Plant Physiol ; 162(3): 1632-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669746

RESUMO

The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.


Assuntos
Oryza/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Análise de Variância , Dióxido de Carbono/metabolismo , Tamanho Celular , Células do Mesofilo , Herança Multifatorial , Oryza/anatomia & histologia , Folhas de Planta/ultraestrutura , Análise de Componente Principal
13.
Plant Cell Environ ; 37(11): 2601-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24716875

RESUMO

Photosynthesis in C(3) -C(4) intermediates reduces carbon loss by photorespiration through refixing photorespired CO(2) within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C(3) -C(4) plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C(3) -C(4) Salsola divaricata was tested to determine whether it reverts to C(3) photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C(3) -C(4) features acclimate to these growth conditions. The CO(2) compensation point and net rates of CO(2) assimilation in cold-grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C(3) -C(4) intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non-phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold-grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain.


Assuntos
Aclimatação/fisiologia , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Temperatura Baixa , Fotossíntese , Salsola/fisiologia , Western Blotting , Respiração Celular , Citocromos/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Salsola/citologia , Salsola/enzimologia , Salsola/ultraestrutura
14.
J Exp Bot ; 65(13): 3595-607, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24600021

RESUMO

In subfamily Suaedoideae, four independent gains of C4 photosynthesis are proposed, which includes two parallel origins of Kranz anatomy (sections Salsina and Schoberia) and two independent origins of single-cell C4 anatomy (Bienertia and Suaeda aralocaspica). Additional phylogenetic support for this hypothesis was generated from sequence data of the C-terminal portion of the phosphoenolpyruvate carboxylase (PEPC) gene used in C4 photosynthesis (ppc-1) in combination with previous sequence data. ppc-1 sequence was generated for 20 species in Suaedoideae and two outgroup Salsola species that included all types of C4 anatomies as well as two types of C3 anatomies. A branch-site test for positively selected codons was performed using the software package PAML. From labelling of the four branches where C4 is hypothesized to have developed (foreground branches), residue 733 (maize numbering) was identified to be under positive selection with a posterior probability >0.99 and residue 868 at the >0.95 interval using Bayes empirical Bayes (BEB). When labelling all the branches within C4 clades, the branch-site test identified 13 codons to be under selection with a posterior probability >0.95 by BEB; this is discussed considering current information on functional residues. The signature C4 substitution of an alanine for a serine at position 780 in the C-terminal end (which is considered a major determinant of affinity for PEP) was only found in four of the C4 species sampled, while eight of the C4 species and all the C3 species have an alanine residue; indicating that this substitution is not a requirement for C4 function.


Assuntos
Chenopodiaceae/enzimologia , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese , Sequência de Bases , Chenopodiaceae/genética , Modelos Estatísticos , Modelos Estruturais , Dados de Sequência Molecular , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/metabolismo , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Seleção Genética , Análise de Sequência de DNA
15.
J Exp Bot ; 65(13): 3525-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24550438

RESUMO

In family Cleomaceae there are NAD-malic enzyme-type C4 species having different forms of leaf anatomy. Leaves of Cleome angustifolia have Glossocardioid-type anatomy with a single complex Kranz unit which surrounds all the veins, while C. gynandra has Atriplicoid anatomy with multiple Kranz units, each surrounding an individual vein. Biochemical and ultrastructural differentiation of mesophyll (M) and bundle sheath (BS) cells were studied along a developmental gradient, from the leaf base (youngest) to the tip (mature). Initially, there is cell-specific expression of certain photosynthetic enzymes, which subsequently increase along with structural differentiation. At the base of the leaf, following division of ground tissue to form M and BS cells which are structurally similar, there is selective localization of Rubisco and glycine decarboxylase to BS cells. Thus, a biochemical C3 default stage, with Rubisco expression in both cell types, does not occur. Additionally, phosphoenolpyruvate carboxylase (PEPC) is selectively expressed in M cells near the base. Surprisingly, in both species, an additional layer of spongy M cells on the abaxial side of the leaf has the same differentiation with PEPC, even though it is not in contact with BS cells. During development along the longitudinal gradient there is structural differentiation of the cells, chloroplasts, and mitochondria, resulting in complete formation of Kranz anatomy. In both species, development of the C4 system occurs similarly, irrespective of having very different types of Kranz anatomy, different ontogenetic origins of BS and M, and independent evolutionary origins of C4 photosynthesis.


Assuntos
Cleome/ultraestrutura , Fotossíntese , Folhas de Planta/ultraestrutura , Cloroplastos/metabolismo , Cleome/crescimento & desenvolvimento , Cleome/fisiologia , Células do Mesofilo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie
16.
J Exp Bot ; 64(12): 3583-604, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23881394

RESUMO

In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species of Salsola which are not performing C4 based on leaf carbon isotope composition. The results infer the following progression in distinct functional and structural forms from C3 to intermediate to C4 photosynthesis with increased leaf succulence without changes in vein density: From species performing C3 photosynthesis with Sympegmoid anatomy with two equivalent layers of elongated M cells, with few organelles in a discontinuous layer of bundle sheath (BS) cells (S. genistoides, S. masenderanica, S. webbii) > development of proto-Kranz BS cells having mitochondria in a centripetal position and increased chloroplast number (S. montana) > functional C3-C4 intermediates having intermediate CO2 compensation points with refixation of photorespired CO2, development of Kranz-like anatomy with reduction in the outer M cell layer to hypodermal-like cells, and increased specialization (but not size) of a Kranz-like inner layer of cells with increased cell wall thickness, organelle number, and selective expression of mitochondrial glycine decarboxylase (Kranz-like Sympegmoid, S. arbusculiformis; and Kranz-like Salsoloid, S. divaricata) > selective expression of enzymes between the two cell types for performing C4 with Salsoloid-type anatomy. Phylogenetic analysis of tribe Salsoleae shows the occurrence of C3 and intermediates in several clades, and lineages of interest for studying different forms of anatomy.


Assuntos
Chenopodiaceae/fisiologia , Chenopodiaceae/ultraestrutura , Evolução Molecular , Fotossíntese , Western Blotting , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Chenopodiaceae/classificação , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
17.
Am J Bot ; 100(12): 2388-402, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24259525

RESUMO

PREMISE OF THE STUDY: Portulacaceae is a family with a remarkable diversity in photosynthetic pathways. This lineage not only has species with different C4 biochemistry (NADP-ME and NAD-ME types) and C3-C4 intermediacy, but also displays different leaf anatomical configurations. Here we addressed the evolutionary history of leaf anatomy and photosynthetic pathways in Portulacaceae. METHODS: Photosynthetic pathways were assessed based on leaf anatomy and carbon isotope ratios. Information on the NADP-ME and NAD-ME C4 variants was obtained from the literature. The evolutionary relationships and trait evolution were estimated under a Bayesian framework, and divergence times were calibrated using the ages obtained in a previous study. KEY RESULTS: C4 photosynthesis is the main pathway in Portulacaceae. One clade (Cryptopetala), however, includes species that have non-Kranz anatomy and C3 type isotope values, two of which are C3-C4 intermediates. The ancestral leaf anatomy for the family is uncertain. The analysis showed one origin of the C4 pathway, which was lost in the Cryptopetala clade. Nevertheless, when a second analysis was performed taking into account the limited number of species with NAD-ME and NADP-ME data, a secondary gain of the C4 pathway from a C3-C4 intermediate was inferred. CONCLUSIONS: The C4 pathway evolved ca. 23 Myr in the Portulacaceae. The number of times that the pathway evolved in the family is uncertain. The diversity of leaf anatomical types and C4 biochemical variants suggest multiple independent origins of C4 photosynthesis. Evidence for a switch from C4 to C3-C4 intermediacy supports the hypothesis that intermediates represent a distinct successful strategy.


Assuntos
Evolução Biológica , Carbono/metabolismo , Fotossíntese/genética , Filogenia , Folhas de Planta , Portulacaceae/genética , Teorema de Bayes , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Malatos/metabolismo , NAD/genética , NAD/metabolismo , NADP/genética , NADP/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Portulacaceae/anatomia & histologia , Portulacaceae/fisiologia
18.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068683

RESUMO

C4 photosynthesis has evolved independently multiple times in grass lineages with nine anatomical and three biochemical subtypes. Chloridoideae represents one of the separate events and contains species of two biochemical subtypes, NAD-ME and PEP-CK. Assessment of C4 photosynthesis diversification is limited by species sampling. In this study, the biochemical subtypes together with anatomical leaf traits were analyzed in 19 species to reveal the evolutionary scenario for diversification of C4 photosynthesis in tribe Zoysieae (Chloridoideae). The effect of habitat on anatomical and biochemical diversification was also evaluated. The results for the 19 species studied indicate that 11 species have only NAD-ME as a decarboxylating enzyme, while eight species belong to the PEP-CK subtype. Leaf anatomy corresponds to the biochemical subtype. Analysis of Zoysieae phylogeny indicates multiple switches between PEP-CK and NAD-ME photosynthetic subtypes, with PEP-CK most likely as the ancestral subtype, and with multiple independent PEP-CK decarboxylase losses and its secondary acquisition. A strong correlation was detected between C4 biochemical subtypes studied and habitat annual precipitation wherein NAD-ME species are confined to drier habitats, while PEP-CK species prefer humid areas. Structural adaptations to arid climate include increases in leaf thickness and interveinal distance. Our analysis suggests that multiple loss of PEP-CK decarboxylase could have been driven by climate aridization followed by continued adaptive changes in leaf anatomy.

19.
Plant Physiol ; 155(4): 1612-28, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21263039

RESUMO

Bienertia sinuspersici is a land plant known to perform C(4) photosynthesis through the location of dimorphic chloroplasts in separate cytoplasmic domains within a single photosynthetic cell. A protocol was developed with isolated protoplasts to obtain peripheral chloroplasts (P-CP), a central compartment (CC), and chloroplasts from the CC (C-CP) to study the subcellular localization of photosynthetic functions. Analyses of these preparations established intracellular compartmentation of processes to support a NAD-malic enzyme (ME)-type C(4) cycle. Western-blot analyses indicated that the CC has Rubisco from the C(3) cycle, the C(4) decarboxylase NAD-ME, a mitochondrial isoform of aspartate aminotransferase, and photorespiratory markers, while the C-CP and P-CP have high levels of Rubisco and pyruvate, Pidikinase, respectively. Other enzymes for supporting a NAD-ME cycle via an aspartate-alanine shuttle, carbonic anhydrase, phosophoenolpyruvate carboxylase, alanine, and an isoform of aspartate aminotransferase are localized in the cytosol. Functional characterization by photosynthetic oxygen evolution revealed that only the C-CP have a fully operational C(3) cycle, while both chloroplast types have the capacity to photoreduce 3-phosphoglycerate. The P-CP were enriched in a putative pyruvate transporter and showed light-dependent conversion of pyruvate to phosphoenolpyruvate. There is a larger investment in chloroplasts in the central domain than in the peripheral domain (6-fold more chloroplasts and 4-fold more chlorophyll). The implications of this uneven distribution for the energetics of the C(4) and C(3) cycles are discussed. The results indicate that peripheral and central compartment chloroplasts in the single-cell C(4) species B. sinuspersici function analogous to mesophyll and bundle sheath chloroplasts of Kranz-type C(4) species.


Assuntos
Amaranthaceae/enzimologia , Cloroplastos/enzimologia , Fotossíntese , Amaranthaceae/fisiologia , Clorofila/análise , Cloroplastos/fisiologia , Oxigênio/metabolismo , Proteínas de Plantas/análise
20.
Plant Physiol ; 156(2): 503-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511990

RESUMO

The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C(3) photosynthetic pathway, in contrast to its leaves, which use the C(4) photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO(2) compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO(2) assimilation rate in the husk was less than that in the leaves and did not saturate at high CO(2), indicating CO(2) diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO(2) compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C(4)-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C(4) photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained.


Assuntos
Fotossíntese/fisiologia , Zea mays/anatomia & histologia , Zea mays/fisiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Clorofila/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/enzimologia , Zea mays/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA