Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(11): 7674-7680, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33970609

RESUMO

Ammonia (NH3) recovery from used water (previously wastewater) is highly desirable to depart from fossil fuel-dependent NH3 production and curb nitrogen emission to the environment. Electrochemical NH3 recovery is promising since it can simply convert aqueous NH4+ to gaseous NH3 using cathodic reactions (OH- generation). However, the use of a separated electrode and membrane imposes high resistances to the cathodic reaction and NH3 transfer. This study examined an activated carbon (AC)-based membrane electrode functionalized with nickel to electrochemically recover NH3 from synthetic anaerobic centrate. The membrane electrode was fabricated using nickel-adsorbed AC powder and a polyvinylidene fluoride (PVDF) binder, and the PVDF membrane layer was formed at the electrode surface by phase inversion. The NH3-N recovery flux of 50.3 ± 0.4 gNH3-N/m2/d was produced at 17.1 A/m2 with a recovery solution at pH 7, and NH3-N fluxes and energy consumptions were improved as the recovery solution became acidic (62.2 ± 2.1 gNH3-N/m2/d with 16.0 ± 1.6 kWh/kgNH3-N at pH 2). Increasing PVDF loadings did not impact the electrochemical performances of the Ni/AC-PVDF electrode, but slightly lower (7%) NH3-N fluxes were obtained with higher PVDF loadings. Ni dissolution (3.7-6.0% loss) was affected by the recovery solution pH, but it did not impact the performances over the cycles.


Assuntos
Amônia , Níquel , Anaerobiose , Carvão Vegetal , Eletrodos
2.
J Environ Sci (China) ; 93: 48-56, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446459

RESUMO

Nanophotocatalysts have shown great potential for degrading poly- and perfluorinated substances (PFAS). In light of the fact that most of these catalysts were studied in pure water, this study was designed to elucidate effects from common environmental factors on decomposing and defluorinating perfluorooctanoic acid (PFOA) by In2O3 nanoparticles. Results from this work demonstrated that among the seven parameters, pH, sulfate, chloride, H2O2, In2O3 dose, NOM and O2, the first four had statistically significant negative effects on PFOA degradation. Since PFOA is a strong acid, the best condition leading to the highest PFOA removal was identified for two pH ranges. When pH was between 4 and 8, the optimal condition was: pH = 4.2; sulfate = 5.00 mg/L; chloride = 20.43 mg/L; H2O2 = 0 mmol/L. Under this condition, PFOA decomposition and defluorination were 55.22 and 23.56%, respectively. When pH was between 2 and 6, the optimal condition was: pH = 2; sulfate = 5.00 mg/L; chloride = 27.31 mg/L; H2O2 = 0 mmol/L. With this condition, the modeled PFOA decomposition was 97.59% with a defluorination of approximately 100%. These predicted results were all confirmed by experimental data. Thus, In2O3 nanoparticles can be used for degrading PFOA in aqueous solutions. This approach works best when the target contaminated water contains low concentrations of NOM, sulfate and chloride and at a low pH.


Assuntos
Fluorocarbonos , Nanopartículas , Caprilatos , Peróxido de Hidrogênio
3.
ACS Omega ; 7(26): 22263-22278, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811908

RESUMO

In this research, solar cell capacitance simulator-one-dimensional (SCAPS-1D) software was used to build and probe nontoxic Cs-based perovskite solar devices and investigate modulations of key material parameters on ultimate power conversion efficiency (PCE). The input material parameters of the absorber Cs-perovskite layer were incrementally changed, and with the various resulting combinations, 63,500 unique devices were formed and probed to produce device PCE. Versatile and well-established machine learning algorithms were thereafter utilized to train, test, and evaluate the output dataset with a focused goal to delineate and rank the input material parameters for their impact on ultimate device performance and PCE. The most impactful parameters were then tuned to showcase unique ranges that would ultimately lead to higher device PCE values. As a validation step, the predicted results were confirmed against SCAPS simulated results as well, highlighting high accuracy and low error metrics. Further optimization of intrinsic material parameters was conducted through modulation of absorber layer thickness, back contact metal, and bulk defect concentration, resulting in an improvement in the PCE of the device from 13.29 to 16.68%. Overall, the results from this investigation provide much-needed insight and guidance for researchers at large, and experimentalists in particular, toward fabricating commercially viable nontoxic inorganic perovskite alternatives for the burgeoning solar industry.

4.
ACS Appl Mater Interfaces ; 13(27): 32450-32460, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196518

RESUMO

Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.

5.
Chem Commun (Camb) ; 56(93): 14665-14668, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156306

RESUMO

Non-destructive Li nuclear reaction analysis techniques were used to profile the Li distribution at the surface of graphitic Li-ion battery anodes. These techniques show that Li concentrations are elevated within 300 nm of the anode surface, even in fully delithiated states. The surface region, which includes the solid electrolyte interphase, contains at least 60% of the total Li irreversibly lost during formation and cycling.

6.
Sci Rep ; 5: 15517, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515670

RESUMO

A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films.

7.
ACS Appl Mater Interfaces ; 7(3): 1662-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25545715

RESUMO

Highly ordered arrays of TiO2 nanotubes can be produced by self-organized anodic growth. It is desirable to identify key parameters playing a role in the maximization of the surface area, growth rate, and nanotube lengths. In this work, the role of the crystallographic orientation of the underlying Ti substrate on the growth rate of anodic self-organized TiO2 nanotubes in viscous organic electrolytes in the presence of small amounts of fluorides is studied. A systematic analysis of cross sections of the nanotubular oxide films on differently oriented substrate grains was conducted by a combination of electron backscatter diffraction and scanning electron microscopy. The characterization allows for a correlation between TiO2 nanotube lengths and diameters and crystallographic parameters of the underlying Ti metal substrate, such as planar surface densities. It is found that the growth rate of TiO2 nanotubes gradually increases with the decreasing planar atomic density of the titanium substrate. Anodic TiO2 nanotubes with the highest aspect ratio form on Ti(-151) [which is close to Ti(010)], whereas nanotube formation is completely inhibited on Ti(001). In the thin compact oxide on Ti(001), the electron donor concentration and electronic conductivity are higher, which leads to a competition between oxide growth and other electrochemical oxidation reactions, such as the oxygen evolution reaction, upon anodic polarization. At grain boundaries between oxide films on Ti(hk0), where nanotubes grow, and Ti(001), where thin compact oxide films are formed, the length of nanotubes decreases most likely because of lateral electron migration from TiO2 on Ti(001) to TiO2 on Ti(hk0).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA