Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 25(11): 105423, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388962

RESUMO

The world's biodiversity is in crisis. Synthetic biology has the potential to transform biodiversity conservation, both directly and indirectly, in ways that are negative and positive. However, applying these biotechnology tools to environmental questions is fraught with uncertainty and could harm cultures, rights, livelihoods, and nature. Decisions about whether or not to use synthetic biology for conservation should be understood alongside the reality of ongoing biodiversity loss. In 2022, the 196 Parties to the United Nations Convention on Biological Diversity are negotiating the post-2020 Global Biodiversity Framework that will guide action by governments and other stakeholders for the next decade to conserve the worlds' biodiversity. To date, synthetic biologists, conservationists, and policy makers have operated in isolation. At this critical time, this review brings these diverse perspectives together and emerges out of the need for a balanced and inclusive examination of the potential application of these technologies to biodiversity conservation.

2.
Ecology ; 92(12): 2267-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22352166

RESUMO

We studied the relative roles of environmental species sorting and priority effects in the assembly of ecological communities on long time scales, by analyzing community turnover of water fleas (Daphnia) in response to strong and recurrent environmental change in a fluctuating tropical lake. During the past 1800 years, Lake Naivasha (Kenya) repeatedly fluctuated between a small saline pond habitat during lowstands and a large freshwater lake habitat during highstands. Starting from a paleoecological reconstruction, we estimated the role of priority effects in Daphnia community assembly across 16 of these habitat turnovers and compared this with the response of the community to reconstructed changes in three environmental variables important for species sorting. Our results indicate that the best predictor of Daphnia community composition during highstands was the community composition just prior to the transition from lowstands to highstands. This reflects a long-lasting priority effect of late lowstand communities on highstand communities, arising when remnant lowstand populations fill newly available ecological space in the rapidly expanding lake habitat. Species sorting and priority effects had a comparable but relatively small influence on community composition during the lowstands. Moreover, these priority effects decayed rapidly with time as Daphnia communities responded to environmental change, in contrast with the highstand communities where priority effects lasted for several decades.


Assuntos
Daphnia , Ecossistema , Lagos , Animais , Quênia , Fatores de Tempo , Clima Tropical
5.
Sci Adv ; 3(1): e1600815, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138544

RESUMO

The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.

6.
Ecol Evol ; 4(9): 1524-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24967073

RESUMO

Habitat fragmentation studies have produced complex results that are challenging to synthesize. Inconsistencies among studies may result from variation in the choice of landscape metrics and response variables, which is often compounded by a lack of key statistical or methodological information. Collating primary datasets on biodiversity responses to fragmentation in a consistent and flexible database permits simple data retrieval for subsequent analyses. We present a relational database that links such field data to taxonomic nomenclature, spatial and temporal plot attributes, and environmental characteristics. Field assessments include measurements of the response(s) (e.g., presence, abundance, ground cover) of one or more species linked to plots in fragments within a partially forested landscape. The database currently holds 9830 unique species recorded in plots of 58 unique landscapes in six of eight realms: mammals 315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods 85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes were sampled as long-term time series (>10 years). Seven hundred and eleven species are found in two or more landscapes. Consolidating the substantial amount of primary data available on biodiversity responses to fragmentation in the context of land-use change and natural disturbances is an essential part of understanding the effects of increasing anthropogenic pressures on land. The consistent format of this database facilitates testing of generalizations concerning biologic responses to fragmentation across diverse systems and taxa. It also allows the re-examination of existing datasets with alternative landscape metrics and robust statistical methods, for example, helping to address pseudo-replication problems. The database can thus help researchers in producing broad syntheses of the effects of land use. The database is dynamic and inclusive, and contributions from individual and large-scale data-collection efforts are welcome.

7.
Biol Rev Camb Philos Soc ; 87(2): 430-56, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22032243

RESUMO

Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.


Assuntos
Evolução Biológica , Chironomidae/fisiologia , Ecossistema , Temperatura , Animais , Chironomidae/genética , Fósseis , Larva
8.
J Biogeogr ; 34(1): 69-89, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32336866

RESUMO

Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical cold-water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to evaluate the potential of Afroalpine Chironomidae as biological indicators to monitor future changes in the ecological integrity of their habitat. Location Mount Kenya (Kenya) and Rwenzori Mountains (Uganda). Methods The species composition of Afroalpine chironomid communities was assessed using recent larval death assemblages extracted from the surface sediments of 11 high-mountain lakes between 2900 and 4575 m. Results were compared with similar faunal data from 68 East African lakes at low and middle elevation (750-2760 m), and with literature records of Chironomidae species distribution in sub-Saharan Africa, the Palaearctic region and elsewhere. All recovered taxa were fully described and illustrated. Results The 11-lake analysis yielded 1744 subfossil chironomid larvae belonging to 16 distinct taxa of full-grown larvae, and three taxa of less differentiated juveniles. Eleven of these 16 are not known to occur in African lakes at lower elevation, and eight taxa (or 50% of total species richness) appear restricted to the specific habitat of cold lakes above 3900 m, where night-time freezing is frequent year-round. The faunal transition zone coincides broadly with the Ericaceous zone of terrestrial vegetation (c. 3000-4000 m). Snowline depression during the Quaternary ice ages must have facilitated dispersion of cold-stenothermous species among the high mountains of equatorial East Africa, but less so from or to the Palaearctic region via the Ethiopian highlands. Main conclusions Chironomid communities in glacier-fed lakes on Africa's highest mountains are highly distinct from those of lowland African lakes, and potentially unique on a continental scale. By virtue of excellent preservation and their spatial and temporal integration of local community dynamics, chironomid larval death assemblages extracted from surface sediments are powerful biological indicators for monitoring the hydrological and ecological changes associated with the current retreat and loss of Africa's glaciers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA