Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 2: 84-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35402986

RESUMO

The control and manipulation of various types of end effectors such as powered exoskeletons, prostheses, and 'neural' cursors by brain-machine interface (BMI) systems has been the target of many research projects. A seamless "plug and play" interface between any BMI and end effector is desired, wherein similar user's intent cause similar end effectors to behave identically. This report is based on the outcomes of an IEEE Standards Association Industry Connections working group on End Effectors for Brain-Machine Interfacing that convened to identify and address gaps in the existing standards for BMI-based solutions with a focus on the end-effector component. A roadmap towards standardization of end effectors for BMI systems is discussed by identifying current device standards that are applicable for end effectors. While current standards address basic electrical and mechanical safety, and to some extent, performance requirements, several gaps exist pertaining to unified terminologies, data communication protocols, patient safety and risk mitigation.

2.
J Neural Eng ; 15(2): 021004, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29345632

RESUMO

OBJECTIVE: Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. APPROACH: To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. MAIN RESULTS: Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. SIGNIFICANCE: We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Exoesqueleto Energizado , Marcha/fisiologia , Extremidade Inferior/fisiologia , Robótica/métodos , Interfaces Cérebro-Computador/tendências , Eletroencefalografia/tendências , Potenciais Evocados Visuais/fisiologia , Exoesqueleto Energizado/tendências , Humanos , Robótica/tendências , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
3.
Med Devices (Auckl) ; 10: 89-107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533700

RESUMO

Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA