Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566117

RESUMO

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Assuntos
DNA Polimerase Dirigida por DNA , Uracila , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por DNA/genética , Uracila/metabolismo , Plasmídeos , DNA
2.
Metab Eng ; 82: 201-215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364997

RESUMO

Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S. cerevisiae CEN.PK113-7D in the absence of pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and/or biotin were corrected by single or combined overexpression of ScFMS1, ScABZ1/ScABZ2, ScSNZ1/ScSNO1, ScINO1 and Cyberlindnera fabianii BIO1, respectively. Several strategies were explored to improve growth of S. cerevisiae CEN.PK113-7D in thiamine-free medium. Overexpression of ScTHI4 and/or ScTHI5 enabled thiamine-independent growth at 83% of the maximum specific growth rate of the reference strain in vitamin-supplemented medium. Combined overexpression of seven native S. cerevisiae genes and CfBIO1 enabled a maximum specific growth rate of 0.33 ± 0.01 h-1 in vitamin-free synthetic medium. This growth rate was only 17 % lower than that of a congenic reference strain in vitamin-supplemented medium. Physiological parameters of the engineered vitamin-independent strain in aerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) grown on vitamin-free synthetic medium were similar to those of similar cultures of the parental strain grown on vitamin-supplemented medium. Transcriptome analysis revealed only few differences in gene expression between these cultures, which primarily involved genes with roles in Class-B vitamin metabolism. These results pave the way for development of fast-growing vitamin-independent industrial strains of S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vitaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biotina/metabolismo , Tiamina , Meios de Cultura
3.
Nat Commun ; 12(1): 5876, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620865

RESUMO

Chromosomal recombinant gene expression offers a number of advantages over plasmid-based synthetic biology. However, the methods applied for bacterial genome engineering are still challenging and far from being standardized. Here, in an attempt to realize the simplest recombinant genome technology imaginable and facilitate the transition from recombinant plasmids to genomes, we create a simplistic methodology and a comprehensive strain collection called the Standardized Genome Architecture (SEGA). In its simplest form, SEGA enables genome engineering by combining only two reagents: a DNA fragment that can be ordered from a commercial vendor and a stock solution of bacterial cells followed by incubation on agar plates. Recombinant genomes are identified by visual inspection using green-white colony screening akin to classical blue-white screening for recombinant plasmids. The modular nature of SEGA allows precise multi-level control of transcriptional, translational, and post-translational regulation. The SEGA architecture simultaneously supports increased standardization of genetic designs and a broad application range by utilizing well-characterized parts optimized for robust performance in the context of the bacterial genome. Ultimately, its adaption and expansion by the scientific community should improve predictability and comparability of experimental outcomes across different laboratories.


Assuntos
Bactérias/genética , Engenharia Genética/métodos , Genoma Bacteriano , Biologia Sintética/métodos , Cromossomos , Escherichia coli/genética , Citometria de Fluxo/métodos , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Plasmídeos , Regiões Promotoras Genéticas , Recombinação Genética , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA