RESUMO
Thus far, genetic studies of the renin-angiotensin system (RAS) with respect to athletic performance or athlete status have mainly focused on the angiotensin-converting enzyme gene and its insertion/deletion polymorphism. The aim of this study was to investigate the functional rs699 (M235T) polymorphism in angiotensinogen (AGT), the second most important gene of the RAS, for association with athletic status and level of performance. The study included 123 endurance athletes and 100 power-oriented athletes, who were classified as elite or sub-elite according to competitive achievements at the international level, and 354 unrelated sedentary control subjects. The M235T genotype and allele distributions differed significantly between power and endurance athletes (p < 0.0001 and p < 0.0002, genotypes and alleles, respectively) and between power athletes and control subjects (p < 0.0001 and p < 0.0002, genotypes and alleles, respectively). The frequency of the CC genotype in the power athlete group was 2.2 times higher and 3.1 times higher than in the control and endurance groups, respectively. No difference was found in M235T allele distribution between elite and sub-elite athletes, either in power- or endurance-oriented athletes. We conclude that the CC genotype of the M235T polymorphism is overrepresented in Polish power athletes, suggesting that the AGT M235T variant is associated with power athletes' status.
Assuntos
Angiotensinogênio/genética , Atletas , Desempenho Atlético/fisiologia , Resistência Física/genética , Polimorfismo Genético , Adulto , Alelos , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , PolôniaRESUMO
The aims of this study were to determine the distribution of the AMPD1 genotype among groups of high-level Polish power-oriented athletes, and to investigate potential associations between genetic polymorphism in exon 2 of the AMPD1 gene and power-oriented athlete status. Altogether, 158 male Polish power-oriented athletes were genotyped by PCR-RFLP. The genetic control group comprised 160 unrelated male volunteers. We observed significant differences in genotype distribution when all 158 athletes (89.25% CC, 10.75% CT, 0.00% TT; P = 0.0025) were compared with controls (75.00% CC, 23.75% CT, 1.25% TT). A significant deficiency of the T allele was noted in all subgroups (short-distance runners: 5.21%, P = 0.032; short-distance swimmers: 5.56%, P = 0.031; weightlifters: 5.36%, P = 0.024) compared with controls (13.13%), while this trend was even stronger when the frequency of the T allele was compared between controls and all 158 athletes (5.38%, P = 0.0007). Our results indicate a lower frequency of the AMPD1 exon 2 T34 allele in elite Polish power-oriented athletes. Our data suggest that the C allele may help athletes to attain elite status in power-oriented sports.
Assuntos
AMP Desaminase/genética , Atletas , Polimorfismo Genético , Adulto , Éxons , Frequência do Gene , Humanos , Masculino , Polônia , Corrida , Natação , Levantamento de Peso , População Branca/genética , Adulto JovemRESUMO
INTRODUCTION AND OBJECTIVE: Anterior cruciate ligament rupture is one of the most common knee injuries in sports. Although various intrinsic and extrinsic risk factors have been identified, the exact aetiology of the injury is not yet fully understood. Single nucleotide polymorphisms (SNPs) in the collagen type I (COL1A1) gene have been shown to be associated with several complex connective tissue disorders. The aim of this study was to examine the association of -1997G/T polymorphisms in the COL1A1 gene with ACL ruptures in Polish recreational skiers in a case-control study. MATERIALS AND METHODS: A total of 180 male and female recreational skiers with surgically diagnosed with primary ACL ruptures were recruited for the study, all of whom qualified for ligament reconstruction. The control group was comprised of 245 apparently healthy male and female skiers with a comparable level of exposure to ACL injury, none of whom had any self-reported history of ligament or tendon injury. DNA samples extracted from the oral epithelial cells were genotyped for -1997G/T polymorphisms using PCR method. RESULTS: Genotype distribution in the cases (GG-82.2% GT-16.7%; TT-1.1%) showed significant difference (P=0.036) compared to controls (GG-71.4% GT-26.5%; TT-2.2%). The frequency of the GG genotype in the ACL rupture group was also statistically significant (p=0.011, Fisher's exact test recessive mode: GG vs GT+TT). The frequency of the G allele was higher in these cases (90.6%), and also statistically significant (p=0.012) when compared with controls (84.7%). CONCLUSION: The results obtained indicate that the -1997G/T COL1A1 gene is one of the genetic markers to be taken into the consideration in the identification of the risk of ACL injury.
Assuntos
Lesões do Ligamento Cruzado Anterior/epidemiologia , Colágeno Tipo I/genética , Polimorfismo de Nucleotídeo Único , Ruptura/epidemiologia , Esqui/lesões , Lesões do Ligamento Cruzado Anterior/etiologia , Lesões do Ligamento Cruzado Anterior/genética , Estudos de Casos e Controles , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Humanos , Masculino , Polônia/epidemiologia , Fatores de Risco , Ruptura/etiologia , Ruptura/genéticaRESUMO
BACKGROUND: Long-term and intensive physical effort causes metabolic and biochemical adaptations for both athletic and non-athletic objectives. Knowing the importance of aerobic training in football players, the aim of this study was to evaluate changes in the activity of: creatinine kinase (CK), creatine kinase MB (CKMB), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (HBDH), cholinesterase (ChE) and alkaline phosphatase (ALP) in response to a semi-long distance outdoor run under aerobic conditions among both female and male football players. METHODS: Sixteen participants aged 21.9±2 years (women) and 18.4±0.5 years (men), all of them voluntarily recruited football players, took part in an outdoor run, the women covering a distance of 7.4±0.3 km while men covered a distance of 10.7±1.0 km. Plasma activities of the studied enzymes were determined using an appropriate diagnostic assay kit. RESULTS: Our results indicate that total LDH activity could be a useful tool in evaluating physical fitness among athletes. We simultaneously established that ChE could not be a marker useful in assessing metabolic response to physical effort in athletes. Moreover, our results suggest that post-effort changes in ALP activity might be used to estimate early symptoms of certain vitamin deficiencies in an athlete's diet. CONCLUSIONS: We confirmed that the assessment of activity of selected traditional diagnostic enzymatic markers provides information about muscle state after physical effort.
RESUMO
Alpha-actinins are an ancient family of actin-binding proteins that play structural and regulatory roles in cytoskeletal organization. In skeletal muscle, α-actinin-3 protein is an important structural component of the Z disc, where it anchors actin thin filaments, helping to maintain the myofibrillar array. A common nonsense polymorphism in codon 577 of the ACTN3 gene (R577X) results in α-actinin-3 deficiency in XX homozygotes. Based on knowledge about the role of ACTN3 R557X polymorphism in skeletal muscle function, we postulated that the genetic polymorphism of ACTN3 could also improve sprint and power ability. We compared genotypic and allelic frequencies of the ACTN3 R557X polymorphism in two groups of men of the same Caucasian descent: 158 power-orientated athletes and 254 volunteers not involved in competitive sport. The genotype distribution in the group of power-oriented athletes showed significant differences (P=0.008) compared to controls. However, among the investigated subgroups of athletes, only the difference of ACTN3 R577X genotype between sprinters and controls reached statistical significance (P=0.041). The frequencies of the ACTN3 577X allele (30.69% vs. 40.35%; P=0.005) were significantly different in all athletes compared to controls. Our results support the hypothesis that the ACTN3 577XX allele may have some beneficial effect on sprint-power performance, because the ACTN3 XX genotype is significantly reduced in Polish power-oriented athletes compared to controls. This finding seems to be in agreement with previously reported case-control studies. However, ACTN3 polymorphism as a genetic marker for sport talent identification should be interpreted with great caution.