Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(14): e2205412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653934

RESUMO

The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.

2.
Chemistry ; 29(24): e202300277, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36823437

RESUMO

Metal oxide-based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid-liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe2 O4 (CFO) thin film photoanodes were prepared by dip-coating and soft-templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127), polyisobutylene-block-poly(ethylene oxide) (PIB-PEO) and poly(ethylene-co-butylene)-block-poly(ethylene oxide) (Kraton liquid™-PEO, KLE). The non-ordered CFO showed the highest photocurrent density of 0.2 mA/cm2 at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron-hole recombination at the defective surface. This interpretation is confirmed by intensity-modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP-SPS). The lowest surface recombination rate was observed for the ordered KLE-based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.

3.
Small ; 10(8): 1566-74, 1442, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24644269

RESUMO

Macroporous TiO2 (anatase) thin films are fabricated by an all low-temperature process in which substrates are dip-coated in suspensions of mixed anatase nanoparticles and polystyrene beads, and the templating agents are removed by ultraviolet (UV) irradiation at a temperature below 50 °C. Scanning electron microscopy (SEM) and Raman spectroscopy show that the templating polymer beads are removed by UV irradiation combined with the photocatalytic activity of TiO2. X-Ray diffraction reveals that nanoparticle growth is negligible in UV irradiated films, while nanoparticle size increases by almost 10 times in calcined films that are prepared for comparison. The macroporous films are prepared on FTO-(fluorine-doped tin oxide) coated glass and ITO (indium tin oxide) coated flexible plastics and thereby used as working electrodes. In both cases, the films are electrochemically addressable, and cyclic voltammetry is consistent with the response of bulk TiO2 for calcined films and of nanoscale-TiO2 for UV-irradiated films.

4.
Nanoscale Adv ; 6(11): 2875-2891, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817433

RESUMO

Copper oxides are promising photocathode materials for solar hydrogen production due to their narrow optical band gap energy allowing broad visible light absorption. However, they suffer from severe photocorrosion upon illumination, mainly due to copper reduction. Nanostructuring has been proven to enhance the photoresponse of CuO photocathodes; however, there is a lack of precise structural control on the nanoscale upon sol-gel synthesis and calcination for achieving optically transparent CuO thin film photoabsorbers. In this study, nanoporous and nanocrystalline CuO networks were prepared by a soft-templating and dip-coating method utilizing poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127) as a structure-directing agent, resulting for the first-time in uniformly structured, crack-free, and optically transparent CuO thin films. The photoelectrochemical properties of the nanoporous CuO frameworks were investigated as a function of the calcination temperature and film thickness, revealing important information about the photocurrent, photostability, and photovoltage. Based on surface photovoltage spectroscopy (SPV), the films are p-type and generate up to 60 mV photovoltage at 2.0 eV (0.050 mW cm-2) irradiation for the film annealed at 750 °C. For these high annealing temperatures, the nanocrystalline domains in the thin film structure are more developed, resulting in improved electronic quality. In aqueous electrolytes with or without methyl viologen (as a fast electron acceptor), CuO films show cathodic photocurrents of up to -2.4 mA cm-2 at 0.32 V vs. RHE (air mass (AM) 1.5). However, the photocurrents were found to be entirely due to photocorrosion of the films and decay to near zero over the course of 20 min under AM 1.5 illumination. These fundamental results on the structural and morphological development upon calcination provide a direction and show the necessity for further (surface) treatment of sol-gel derived CuO photocathodes for photoelectrochemical applications. The study demonstrates how to control the size of nanopores starting from mesopore formation at 400 °C to the evolution of macroporous frameworks at 750 °C.

5.
Dalton Trans ; 53(5): 2082-2097, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180044

RESUMO

CeNiO3 has been reported in the literature in the last few years as a novel LnNiO3 compound with promising applications in different catalytic fields, but its structure has not been correctly reported so far. In this research, CeNiO3 (RB1), CeO2 and NiO have been synthesized in a nanocrystalline form using a modified citrate aqueous sol-gel route. A direct comparison between the equimolar physical mixture (n(CeO2) : n(NiO) = 1 : 1) and compound RB1 was made. Their structural differences were investigated by laboratory powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) detector, and Raman spectroscopy. The surface of the compounds was analyzed by X-ray photoelectron spectroscopy (XPS), while the thermal behaviour was explored by thermogravimetric analysis (TGA). Their magnetic properties were also investigated with the aim of exploring the differences between these two compounds. There were clear differences between the physical mixture of CeO2 + NiO and RB1 presented by all of these employed methods. Synchrotron methods, such as atomic pair distribution function analysis (PDF), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), were used to explore the structure of RB1 in more detail. Three different models for the structural solution of RB1 were proposed. One structural solution proposes that RB1 is a single-phase pyrochlore compound (Ce2Ni2O7) while the other two solutions suggest that RB1 is a two-phase system of either CeO2 + NiO or Ce1-xNixO2 and NiO.

6.
Sci Rep ; 11(1): 17687, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480048

RESUMO

In this study, the preparation of anatase TiO2 nanocrystals via a facile non-aqueous sol-gel route and their characterization are reported. The 3-4 nm particles are readily dispersable in aqueous media and show excellent photoreactivity in terms of rhodamine B degradation. The catalytic performance can be further increased considerably by doping with iron and UV-light irradiation as a pre-treatment. The effect of surface ligands (blocked adsorption sites, surface defects etc.) on the photoreactivity was thoroughly probed using thermogravimetric analysis combined with mass spectrometry. Photoelectrochemical characterization of thin-film electrodes made from the same TiO2 nanocrystals showed the opposite trend to the catalytic experiments, that is, a strong decrease in photocurrent and quantum efficiency upon doping due to introduction of shallow defect states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA