RESUMO
Diffuse malignant peritoneal mesothelioma (DMPM) is a rare and rapidly lethal tumor, poorly responsive to conventional treatments. In this regards, the identification of molecular alterations underlying DMPM onset and progression might be exploited to develop novel therapeutic strategies. Here, we focused on miR-550a-3p, which we found downregulated in 45 DMPM clinical samples compared to normal tissues and whose expression levels were associated with patient outcome. Through a gain-of-function approach using miRNA mimics in 3 DMPM cell lines, we demonstrated the tumor-suppressive role of miR-550a-3p. Specifically, miRNA ectopic expression impaired cell proliferation and invasiveness, enhanced the apoptotic response, and reduced the growth of DMPM xenografts in mice. Antiproliferative and proapoptotic effects were also observed in prostate and ovarian cancer cell lines following miR-550a-3p ectopic expression. miR-550a-3p effects were mediated, at least in part, by the direct inhibition of HSP90AA1 and the consequent downregulation of its target proteins, the levels of which were rescued upon disruption of miRNA-HSP90AA1 mRNA pairing, partially abrogating miR-550a-3p-induced cellular effects. Our results show that miR-550a-3p reconstitution affects several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy for DMPM.
Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , MicroRNAs , Neoplasias Peritoneais , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/farmacologia , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Prognóstico , RNA MensageiroRESUMO
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
RESUMO
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
RESUMO
Active surveillance (AS) has evolved as a strategy alternative to radical treatments for very low risk and low-risk prostate cancer (PCa). However, current criteria for selecting AS patients are still suboptimal. Here, we performed an unprecedented analysis of the circulating miRNome to investigate whether specific miRNAs associated with disease reclassification can provide risk refinement to standard clinicopathological features for improving patient selection. The global miRNA expression profiles were assessed in plasma samples prospectively collected at baseline from 386 patients on AS included in three independent mono-institutional cohorts (training, testing and validation sets). A three-miRNA signature (miR-511-5p, miR-598-3p and miR-199a-5p) was found to predict reclassification in all patient cohorts (training set: AUC 0.74, 95% CI 0.60-0.87, testing set: AUC 0.65, 95% CI 0.51-0.80, validation set: AUC 0.68, 95% CI 0.56-0.80). Importantly, the addition of the three-miRNA signature improved the performance of the clinical model including clinicopathological variables only (AUC 0.70, 95% CI 0.61-0.78 vs. 0.76, 95% CI 0.68-0.84). Overall, we trained, tested and validated a three-miRNA signature which, combined with selected clinicopathological variables, may represent a promising biomarker to improve on currently available clinicopathological risk stratification tools for a better selection of truly indolent PCa patients suitable for AS.
RESUMO
BACKGROUND: Dedifferentiated liposarcoma (DDLPS), a tumor that lacks effective treatment strategies and is associated with poor outcomes, expresses amplified MDM2 in the presence of wild-type p53. MDM2 ubiquitination of p53 facilitates its XPO1-mediated nuclear export, thus limiting p53 tumor suppressor functions. Consequently, nuclear export is a rational target in DDLPS. We directly compared the antitumor activity of the first-in class XPO1 inhibitor selinexor and doxorubicin, the standard front-line therapy in sarcomas, in DDLPS patient-derived xenografts (PDXs) and primary cell lines. METHODS: Drug activity was assessed in three PDXs (and two corresponding cell lines) established from the dedifferentiated component of primary untreated retroperitoneal DDLPS with myogenic (N = 2) and rhabdomyoblastic (N = 1) differentiation from patients who underwent surgery. These models were marked by amplification of MDM2, CDK4 and HMGA2 genes. RESULTS: Selinexor was moderately active in the three PDXs but achieved greater tumor response compared to doxorubicin (maximum tumor volume inhibition: 46-80 % vs. 37-60 %). The PDX harboring rhabdomyoblastic dedifferentiation showed the highest sensitivity to both agents. PDX response to selinexor and doxorubicin was not associated with the extent of MDM2 and CDK4 gene amplification. Interestingly, the most chemosensitive PDX model showed the lowest extent of HMGA2 amplification. Selinexor was also more efficient than doxorubicinin in inducing an apoptotic response in PDXs and cell lines. Consistently, an increased nuclear accumulation of p53 was seen in all selinexor-treated models. In addition, a time-dependent decrease of survivin expression, with an almost complete abrogation of the cytoplasmic anti-apoptotic pool of this protein, was observed as a consequence of the decreased acetylation/activation of STAT3 and the increased ubiquitination of nuclear survivin. CONCLUSIONS: Selinexor showed a moderate antitumor activity in three DDLPS PDXs, which was, however, consistently higher than doxorubicin across all different models regardless the extent of MDM2 amplification and the histological differentiation. The depletion of survivin protein seems to significantly contribute to the induction of apoptosis through which selinexor exerts its antitumor activity.
Assuntos
Doxorrubicina/farmacologia , Hidrazinas/farmacologia , Lipossarcoma/tratamento farmacológico , Survivina/metabolismo , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Regulação para Baixo , Humanos , Lipossarcoma/diagnóstico por imagem , Lipossarcoma/metabolismo , Lipossarcoma/patologia , Masculino , Camundongos , Camundongos Nus , Distribuição Aleatória , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The development of novel therapies or the improvement of currently used approaches to treat prostate cancer (PCa), the most frequently diagnosed male tumor in developed countries, is an urgent need. In this regard, the functional characterization of microRNAs, molecules shown to regulate a number of cancer-related pathways, is instrumental to their possible clinical exploitation. Here, we demonstrate the tumor-suppressive role of the so far uncharacterized miR-1272, which we found to be significantly down-modulated in PCa clinical specimens compared to normal tissues. Through a gain-of-function approach using miRNA mimics, we showed that miR-1272 supplementation in two PCa cell models (DU145 and 22Rv1) reverted the mesenchymal phenotype by affecting migratory and invasive properties, and reduced cell growth in vitro and in vivo in SCID mice. Additionally, by targeting HIP1 encoding the endocytic protein HIP1, miR-1272 balanced EGFR membrane turnover, thus affecting the downstream AKT/ERK pathways, and, ultimately, increasing PCa cell response to ionizing radiation. Overall, our results show that miR-1272 reconstitution can affect several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy to be pursued for PCa, with the multiple aim of reducing tumor growth, enhancing response to radiotherapy and limiting metastatic dissemination.
Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , TransfecçãoRESUMO
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is the most commonly mutated gene in prostate cancer (PCa). Recent evidence reports a role of SPOP in DNA damage response (DDR), indicating a possible impact of SPOP deregulation on PCa radiosensitivity. This study aimed to define the role of SPOP deregulation (by gene mutation or knockdown) as a radiosensitizing factor in PCa preclinical models. To express WT or mutant (Y87N, K129E and F133V) SPOP, DU145 and PC-3 cells were transfected with pMCV6 vectors. Sensitivity profiles were assessed using clonogenic assay and immunofluorescent staining of γH2AX and RAD51 foci. SCID xenografts were treated with 5 Gy single dose irradiation using an image-guided small animal irradiator. siRNA and miRNA mimics were used to silence SPOP or express the SPOP negative regulator miR-145, respectively. SPOP deregulation, by either gene mutation or knockdown, consistently enhanced the radiation response of PCa models by impairing DDR, as indicated by transcriptome analysis and functionally confirmed by decreased RAD51 foci. SPOP silencing also resulted in a significant downregulation of RAD51 and CHK1 expression, consistent with the impairment of homologous recombination. Our results indicate that SPOP deregulation plays a radiosensitizing role in PCa by impairing DDR via downregulation of RAD51 and CHK1.
RESUMO
BACKGROUND: Radiotherapy is one of the main treatment options for non-metastatic prostate cancer (PCa). Although treatment technical optimization has greatly improved local tumor control, a considerable fraction of patients still experience relapse due to the development of resistance. Radioresistance is a complex and still poorly understood phenomenon involving the deregulation of a variety of signaling pathways as a consequence of several genetic and epigenetic abnormalities. In this context, cumulative evidence supports a functional role of microRNAs in affecting radioresistance, suggesting the modulation of their expression as a novel radiosensitizing approach. Here, we investigated for the first time the ability of miR-205 to enhance the radiation response of PCa models. METHODS: miR-205 reconstitution by a miRNA mimic in PCa cell lines (DU145 and PC-3) was used to elucidate miR-205 biological role. Radiation response in miRNA-reconstituted and control cells was assessed by clonogenic assay, immunofluorescence-based detection of nuclear γ-H2AX foci and comet assay. RNAi was used to silence the miRNA targets PKCε or ZEB1. In addition, target-protection experiments were carried out using a custom oligonucleotide designed to physically disrupt the pairing between the miR-205 and PKCε. For in vivo experiments, xenografts generated in SCID mice by implanting DU145 cells stably expressing miR-205 were exposed to 5-Gy single dose irradiation using an image-guided animal micro-irradiator. RESULTS: miR-205 reconstitution was able to significantly enhance the radiation response of prostate cancer cell lines and xenografts through the impairment of radiation-induced DNA damage repair, as a consequence of PKCε and ZEB1 inhibition. Indeed, phenocopy experiments based on knock-down of either PKCε or ZEB1 reproduced miR-205 radiosensitizing effect, hence confirming a functional role of both targets in the process. At the molecular level, miR-205-induced suppression of PKCε counteracted radioresistance through the impairment of EGFR nuclear translocation and the consequent DNA-PK activation. Consistently, disruption of miR-205-PKCε 3'UTR pairing almost completely abrogated the radiosensitizing effect. CONCLUSIONS: Our results uncovered the molecular and cellular mechanisms underlying the radiosensitizing effect of miR-205. These findings support the clinical interest in developing a novel therapeutic approach based on miR-205 reconstitution to increase PCa response to radiotherapy.
Assuntos
MicroRNAs/genética , Neoplasias da Próstata/radioterapia , Proteína Quinase C-épsilon/antagonistas & inibidores , Tolerância a Radiação/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Reparo do DNA/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Mimetismo Molecular , Células PC-3 , Proteína Quinase C-épsilon/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genéticaRESUMO
BACKGROUND: The value of microRNAs (miRNAs) as novel targets for cancer therapy is now widely recognized. However, no information is currently available on the expression/functional role of miRNAs in diffuse malignant peritoneal mesothelioma (DMPM), a rapidly lethal disease, poorly responsive to conventional treatments, for which the development of new therapeutic strategies is urgently needed. Here, we evaluated the expression and biological effects of miR-34a-one of the most widely deregulated miRNAs in cancer and for which a lipid-formulated mimic is already clinically available-in a large cohort of DMPM clinical samples and a unique collection of in house-developed preclinical models, with the aim to assess the potential of a miR-34a-based approach for disease treatment. METHODS: miR-34a expression was determined by qRT-PCR in 45 DMPM and 7 normal peritoneum specimens as well as in 5 DMPM cell lines. Following transfection with miR-34a mimic, the effects on DMPM cell phenotype, in terms of proliferative potential, apoptotic rate, invasion ability, and cell cycle distribution, were assessed. In addition, three subcutaneous and orthotopic DMPM xenograft models were used to examine the effect of miR-34a on tumorigenicity. The expression of miRNA targets and the activation status of relevant pathways were investigated by western blot. RESULTS: miR-34a was found to be down-regulated in DMPM clinical specimens and cell lines compared to normal peritoneal samples. miR-34a reconstitution in DMPM cells significantly inhibited proliferation and tumorigenicity, induced an apoptotic response, and declined invasion ability, mainly through the down-regulation of c-MET and AXL and the interference with the activation of downstream signaling. Interestingly, a persistent activation of ERK1/2 and AKT in miR-34a-reconstituted cells was found to counteract the antiproliferative and proapoptotic effects of miRNA, yet not affecting its anti-invasive activity. CONCLUSIONS: Our preclinical data showing impressive inhibitory effects induced by miR-34a on DMPM cell proliferation, invasion, and growth in immunodeficient mice strongly suggest the potential clinical utility of a miR-34a-replacement therapy for the treatment of such a still incurable disease. On the other hand, we provide the first evidence of a potential cytoprotective/resistance mechanism that may arise towards miRNA-based therapies through the persistent activation of RTK downstream signaling.
Assuntos
Neoplasias Pulmonares/patologia , Mesotelioma/patologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Proliferação de Células , Regulação para Baixo , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias Peritoneais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptor Tirosina Quinase AxlRESUMO
Radiotherapy is one of the main treatment choices for non-metastatic prostate cancer (PCa), although development of radioresistance limits its effectiveness. Mounting evidence supports the ability of microRNAs to interfere with different radioresistance-associated pathways, suggesting their potential as radiosensitizers. Here, we demonstrate that reconstitution of miR-875-5p, whose expression is down-regulated in PCa clinical samples and directly correlates with that of E-cadherin, was able to enhance radiation response in PCa cell lines and xenografts through EGFR direct targeting. Consistent with the established role of EGFR in sustaining epithelial-to-mesenchymal transition (EMT) and promoting DNA repair following radiation-induced nuclear translocation, we found that miR-875-5p reconstitution in PCa cells counteracted EMT and impaired DNA lesion clearance. Down-regulation of the EMT-inducing transcription factor ZEB1, which also plays a role in homologous recombination-mediated repair of DNA lesions by regulating CHK1 expression, was found to be a major determinant of miR-875-5p-induced radiosensitization, as confirmed by phenocopy experiments showing that siRNA-mediated ZEB1 knock-down was able to reproduce the microRNA radiosensitizing effect. Overall, our data support the clinical interest in developing a novel therapeutic approach based on miR-875-5p reconstitution to increase PCa response to radiotherapy.