Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(12): 8090-8100, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36922950

RESUMO

The slow kinetics of the oxygen reduction reaction (ORR) limits the large-scale usage of the fuel cells. Thus, it is crucial to develop an efficient and stable electrocatalyst for the ORR. Herein, facile synthesis of three-dimensional nitrogen-doped carbon xerogel diamond nanoparticles, CDNPs support is reported. The as-prepared CDNPs support was functionalized with a Keggin-type polyoxomolybdate via the hydrothermal process (POM@CDNPs). As the characterization techniques revealed, this nanocomposite possesses a three-dimensional structure, high density of nitrogen doping, and well-dispersed porous pyramidal morphology of POM, making it a promising catalyst for ORR in alkaline medium. The POM@CDNPs nanocomposite exhibits an outstanding activity for ORR with a limiting current density that reaches -7.30 mA cm-2 at 0.17 V vs. RHE. Moreover, a half-wave potential of 0.773 V is delivered with a stability of about 99.9% after the 100th repetitive cycle as this catalyst forces the ORR to the direct-four-electron pathway. This work spots the advantages of hybridizing the sp3 of the nanodiamond with the sp2 of the carbon xerogels to increase the conductivity of the support material. In addition, the role of the porous pyramidal morphology of the POM on the activity of the nanocomposite was evaluated. This study suggests using advanced carbon-based electro-catalysts with outstanding activity and stability.

2.
Sci Rep ; 12(1): 13333, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922442

RESUMO

In this study, the anionic state of Ceftriaxone sodium (Cefx) and Ceftazidime (Cefz) medication corrosion inhibition capabilities for Al in 0.1 M NaOH solution are explored using various electrochemical analyses. Furthermore, the morphological structure and surface chemical composition of the impact of these drugs on the Al substrate in NaOH are investigated. For the prediction and analysis of interactions between molecule structure and inhibition efficiency, quantum chemical calculations (QC), Monte Carlo simulations (MC), and molecular dynamics (MD) simulations (MD) are performed. The electrochemical findings reveal that the inhibitory effectiveness increases with increasing drug concentrations and declines with rising temperature, reaching a maximum value of 78.4% for 300 ppm Cefx while 59.5% for 300 ppm Cefz at 293 K, implying that Cefx outperforms for Cefz. In addition, the studied drugs act as cathodic inhibitors, and their adsorption is spontaneous and mixed type adsorption in its nature that obeys Freundlich isotherm for Cefz while Temkin isotherm is the best-fitted one for Cefx. Surface analysis and wettability measurements imply that Cefx and Cefz shield the Al against corrosion by surface adsorption and generating a protective hydrophobic film. Thermodynamic activation parameters in the absence and presence of 300 ppm of the studied drugs are calculated and discussed. The energies of the border molecular orbitals and computed molecular parameters for the investigated drugs revealed that anionic Cefx is more readily adsorbed on the Al surface than Cefz. This finding is validated further using MC and MD simulations. Overall, the proposed cephalosporin drugs delivered a cost-effective and facile approach for boosting the efficiency of corrosion inhibitors for Al under aggressive conditions.


Assuntos
Alumínio , Aço , Alumínio/química , Cefalosporinas , Corrosão , Hidróxido de Sódio , Aço/química
3.
Sci Rep ; 11(1): 2617, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510443

RESUMO

Corrosion resistance of high strength steel (HHS) embedded in ultra-high performance concrete (UHPC) immersed in 3.5% NaCl solution is evaluated in the absence and presence of nano silica (NS), nano glass waste (NGW), nano rice husk ash (NRHA) and nano metakaolin (NMK) using open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) under normal and accelerated conditions. Data showed that the corrosion rate in the accelerated conditions is higher compared by the normal conditions due to the increasing in the rate of both anodic and cathodic reactions in the presence of anodic current. On the other hand, the presence of the studied nano materials decreases both the anodic and cathodic overpotentials, and shifts both the open circuit potential (Eocp) and corrosion potential (Ecorr) of HSS to more noble values, as well as decreases the values of the corrosion current densities (Icorr) in both normal and accelerated conditions. Furthermore, EIS analysis illustrates that the presence of these materials enhances both the concrete bulk resistance and the charge transfer resistance at HSS/UHPC interface, which retards the flow of the electrons between the anodic and cathodic sites, thus impeding the propagation of the corrosion process. The inhibitory effect of the studied nano materials for the corrosion of HSS is interpreted on the basis of the change in the microstructure and the compressive strength of the UHPC.

4.
Materials (Basel) ; 14(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576486

RESUMO

Layered double hydroxides (LDHs) have emerged as promising electrodes materials for the methanol oxidation reaction. Here, we report on the preparation of different LDHs with the hydrothermal process. The effect of the divalent cation (i.e., Ni, Co, and Zn) on the electrochemical performance of methanol oxidation was investigated. Moreover, nanocomposites of LDHs and carbon xerogels (CX) supported on nickel foam (NF) substrate were prepared to investigate the role of carbon xerogel. The results show that NiFe-LDH/CX/NF is an efficient electrocatalyst for methanol oxidation with a current density that reaches 400 mA·m-2 compared to 250 and 90 mA·cm-2 for NiFe-LDH/NF and NF, respectively. In addition, all LDH/CX/NF nanocomposites show excellent stability for methanol oxidation. A clear relationship is observed between the electrodes crystallite size and their activity to methanol oxidation. The smaller the crystallite size, the higher the current density delivered. Additionally, the presence of carbon xerogel in the nanocomposites offer 3D interconnected micro/mesopores, which facilitate both mass and electron transport.

5.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066052

RESUMO

This investigation presents the influence of various types of nanoparticles on the performance of ultra high performance concrete (UHPC). Three nanoparticles from waste materials include nano-crushed glass, nano-metakaolin, nano-rice husk ash were prepared using the milling technique. In addition, nano-silica prepared using chemical method at the laboratory is implemented to compare the performance. Several UHPC mixes incorporating different dosages of nanoparticles up to 5% are prepared and tested. Mechanical properties, durability as well as the microstructure of UHPC mixes have been evaluated in order to study the influence of nanoparticles on the hardened characteristics of UHPC. The experimental results showed that early strength is increased by the incorporation of nanomaterials, as compared to the reference UHPC mix. The incorporation of 3% nano-rice husk ash produced the highest compressive strength at 91 day. Microstructural measurements using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and Thermogravimetric Analysis (TGA) confirm the role of nanomaterials in densifying the microstructure, reducing calcium hydroxide content as well as producing more C-S-H, which improves the strength and reduces the absorption of UHPC. Nanoparticles prepared from waste materials by the milling technique are comparable to chemically prepared nanosilica in improving mechanical properties, refining the microstructure and reducing the absorption of UHPC.

6.
Sci Rep ; 9(1): 11978, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427726

RESUMO

The electrochemical behaviour and the passive film microstructure of aluminum during its exposure to 3.5 wt% NaCl solution in the absence and presence of S2- ions are investigated using potentiodynamic polarization curves, electrochemical impedance spectroscopy measurements, XRD, XRF, SEM and AFM. Electrochemical measurements show that the presence of S2- ions enhances the uniform corrosion of aluminum in NaCl solution, but delay its susceptibility to the pitting corrosion. In addition, EIS analysis illustrate that the formation of more compact and protective passive layer in the presence of S2- ions compared to its rough surface in the absence of S2- ions as evidenced by the lower value of constant phase element (CPE) and higher value of phase shift (N). Cracks, non- homogenous and open large pits with high degree of roughness are clearly observed on the aluminum surface in the absence of S2- ions, compared to oriented grooves, elongated ridges with the accumulation of the corrosion products inside the pits in the presence of S2- ions. The inhibitory effect of S2- ions for the pitting corrosion of aluminum is interpreted on the basis of the change in its microstructure of the passive film in the absence and presence of S2-ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA