Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 166(1): 9-26, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33416996

RESUMO

Avian infectious bronchitis is a contagious viral disease, caused by avian infectious bronchitis virus (IBV), that leads to severe losses in the poultry industry all over the world. Since the 1950s, IBV has circulated in the Middle East and North Africa, and no tangible evidence has shown any effects of measures taken to control its spread or evolution. Furthermore, new IBV variants are continually discovered. Although several genetic studies on IBV have been conducted, many IBV strains from this region have either been misclassified or remain unclassified. The genotype 23 (GI-23) variant emerged and has prevailed in the Middle East by continuously evolving through inter- and/or intra-genotypic recombination. The GI-23 genotype is currently enzootic throughout Europe and Asia. Although many studies of protection against the circulating strains have been conducted, they have not been standardized according to regulatory requirements. In this review, we provide an overview of the evolution and genetic diversity of IBV genotypes and a genetic classification of IBV strains, with a focus on the GI-23 genotype. The high prevalence of IBV GI-23 strains necessitates the adoption of vaccination schemes using GI-23-based vaccines.


Assuntos
Vírus da Bronquite Infecciosa/genética , Animais , Ásia , Doenças das Aves/virologia , Infecções por Coronavirus/virologia , Europa (Continente) , Evolução Molecular , Genótipo , Oriente Médio , Vacinação/métodos
2.
Virology ; 598: 110193, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096773

RESUMO

This study assesses different IBV vaccination regimens in broiler chickens using commercially available live attenuated GI-23 (Egyptian-VAR2) and GI-1 (H120) vaccines. Vaccines were administered at 1, 14 days of age, or both. The ciliostasis test, following wild-type VAR2 challenge at 28 days of age, indicated that classic H120+VAR2 at one day old followed by the VAR2 vaccine at 14 days of age provided the highest level of protection (89.58%). Similarly, administering VAR2 at 1 day of age and classic H120 at 14 days of age demonstrated substantial protection (85.42%). Conversely, administering only classic H120 and VAR2 at one day old resulted in the lowest protection level (54.17%). Tracheal virus shedding quantification and assessment of trachea and kidney degenerative changes were significantly lower in vaccinated groups compared to the unvaccinated-challenged group. In conclusion, a carefully planned vaccination regimen based on homologous vaccination offers the most effective clinical protection in broiler chickens.


Assuntos
Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/genética , Galinhas/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinação/veterinária , Eliminação de Partículas Virais , Traqueia/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Eficácia de Vacinas
3.
Animals (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804597

RESUMO

This study evaluated the efficacy of live and inactivated conventional GII LaSota and recombinant GVII Newcastle disease vaccines in commercial broilers. The experimental groups (G2-G7) were vaccinated on day 7 and day 21 of age with live vaccines from the same vaccine type "GII LaSota, GVII vaccine (A), GVII vaccine (B)" via eye drop; however, G3, G5, and G7 received a single dose from inactivated counterpart vaccines subcutaneously on day 7 of age. Vaccine efficacy was evaluated based on elicited humoral immunity, clinical protection, and reduction in virus shedding after challenge with virulent GVII 1.1. strain. Results demonstrated that live and inactivated recombinant GVII vaccine based on VG/GA strain backbone elicited superior protection parameters (100% protection). Although the conventional GII LaSota live and inactivated vaccination regime protected 93.3% of vaccinated birds, the virus shedding continued until 10 DPC. The post-vaccination serological monitoring was consistent with protection results. The study concludes that conventional GII ND vaccines alone are probably insufficient due to the current epidemiology of the GVII 1.1 NDV strains. Our findings further support that protection induced by recombinant GVII 1.1. ND vaccines are superior. Interestingly, the efficacy of recombinant ND vaccines seemed to be influenced by the backbone virus since the VG/GA backbone-based vaccine provided better protection and reduced virus shedding.

4.
Transbound Emerg Dis ; 68(1): 21-36, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31297991

RESUMO

For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.


Assuntos
Galinhas , Coinfecção/veterinária , Patos , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Perus , Animais , Coinfecção/epidemiologia , Coinfecção/virologia , Egito/epidemiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia
5.
Animals (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34827914

RESUMO

Infectious bronchitis virus GI-23 lineage, although described approximately two decades ago in the Middle East, has recently drawn remarkable attention and is considered an "emerging" lineage due to its current spread to several other regions, including Europe. Despite the relevance, no comprehensive studies are available investigating its epidemiologic and evolutionary pattern. The present phylodynamic study was designed to fill this gap, benefitting from a collection of freely available GI-23 sequences and ad-hoc generated European ones. After a relatively ancient origin in the Middle East, likely in the first half of the previous century, GI-23 circulated largely undetected or underdiagnosed for a long time in this region, likely causing little damage, potentially because of low virulence coupled with limited development of avian industry in the considered years and regions and insufficient diagnostic activity. The following development of the poultry industry and spread to other countries led to a progressive but slow increase of viral population size between the late '90s and 2010. An increase in viral virulence could also be hypothesized. Of note, a big recombinant cluster, likely originating in the Middle East but spreading thereafter, especially to Europe through Turkey, demonstrated a much-marked increase in viral population size compared to previously circulating variants. The extensive available GI-23 sequence datasets allowed to demonstrate several potential epidemiological links among African, Asian, and European countries, not described for other IBV lineages. However, differently from previously investigated IBV lineages, its spread appears to primarily involve neighbouring countries and those with strong economic and political relationships. It could thus be speculated that frequent effective contacts among locations are necessary for efficient strain transmission. Some countries appear to play a major role as a "bridge" among less related locations, being Turkey the most relevant example. The role of vaccination in controlling the viral population was also tentatively evaluated. However, despite some evidence suggesting such an effect, the bias in sequence and data availability and the variability in the applied vaccination protocols prevent robust conclusions and warrant further investigations.

6.
Vet Sci ; 7(2)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414109

RESUMO

In this study, the protective efficacy of an E. coli live attenuated vaccine was compared to the preventive administration of lectin preparation before the challenge. Two hundred broiler chicks were divided into eight equal groups. The first group was used as a negative control group. Three groups were vaccinated at day 1 with the avian colibacillosis live vaccine of which one group served as a vaccinated nonchallenged group. Another two groups were treated with lectin product (0.5 mL/L drinking water) for three days before the challenge. The last two groups served as challenge control for either E. coli O78 or O125 strains. The challenge was conducted at three weeks of age with either homologous O78 or heterologous O125 E. coli strains, using 0.5 mL/bird of each avian pathogenic E. coli (APEC) strain (~108 colony forming units "CFU"/mL)/subcutaneously. The bodyweight and feed conversion ratios (FCR) were calculated for four weeks. Clinical signs and gross and histopathological lesions were scored at two and seven days post inoculation (dpi). The heart and liver of euthanized chickens at 2 dpi were removed aseptically and homogenized to evaluate pathogenic E. coli colonization. Results showed that live avian colibacillosis vaccine reduced mortalities and APEC colonization in the homologous challenge group but not in the heterologous challenge group. Lectin-treated groups showed 20% and 16% mortality after challenge with E. coli O78 and O125, respectively, and both groups showed performance parameters, clinical signs, and histopathological lesion scores comparable to the negative control group, with variable E. coli colonization of heart and liver. The study demonstrated the efficacy of live attenuated avian colibacillosis vaccine against homologous but not heterologous APEC challenge in broiler chickens. The lectin-containing products can be used as a preventive medication to reduce the clinical impacts of colibacillosis regardless of the challenge strain. Standardization of the evaluation parameters for APEC vaccines is recommended.

7.
Infect Genet Evol ; 84: 104375, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32454245

RESUMO

Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.


Assuntos
Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/virologia , Filogenia , Animais , Egito/epidemiologia , Genoma Viral , Genótipo , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Mortalidade , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/virologia
8.
Poult Sci ; 95(6): 1271-80, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26976895

RESUMO

In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3: ) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses' co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed.


Assuntos
Galinhas , Infecções por Coronavirus/veterinária , Influenza Aviária/epidemiologia , Doença de Newcastle/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Sequência de Aminoácidos , Animais , Coinfecção/epidemiologia , Coinfecção/mortalidade , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Egito/epidemiologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Doença de Newcastle/mortalidade , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/virologia , Prevalência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA