Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960041

RESUMO

Osmotic stress is a serious physiological disorder that affects water movement within the cell membranes. Osmotic stress adversely affects agricultural production and sustainability and is largely caused by soil salinity and water stress. An integrated nitrogen-fixing bacteria (NFB) soil amendment and an exogenous foliar application of Aloe vera leaf extract (ALE), and moringa leaf extract (MLE) were evaluated on roselle (Hibiscus sabdariffa L.) growth, calyx yield, secondary metabolites, and tolerance to osmotic stress in salt-affected soil. The osmotic stress markedly decreased above- and below-ground development of the roselle plant, but integrated NFB soil amendment with ALE or MLE foliar application significantly alleviated its negative impacts. Broadly, an improvement was observed in chlorophyll, carbohydrates, and protein levels following NFB and extracts foliar application, as well as a significant enhancement in antioxidant production (total phenols, ascorbic acid, and FRAP), which decreased peroxide production and increased stress tolerance in plants. Under osmotic stress, the roselle calyx revealed the highest anthocyanin levels, which declined following NFB soil amendment and foliar extract application. Additionally, an enhancement in nitrogen (N), phosphorus (P), and potassium (K) contents and the K/Na ratio, along with a depression in sodium (Na) content, was noticed. The integrated application of Azospirillum lipoferum × ALE exhibited the best results in terms of enhancing above- and below-ground growth, calyx yield, secondary metabolites, and tolerance to osmotic stress of the roselle plants cultivated in the salt-affected soil.

3.
PLoS One ; 18(3): e0281717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881583

RESUMO

Postharvest characteristics, such as vase life and antimicrobial preservation of commercial cut flowers are some of the major determinants of their market value worldwide. Extending vase life while restricting microbial proliferation in cut flowers is an important challenge faced by floricultural researchers. This study evaluates the preservative efficiency of different essential oils used as additive solutions in prolonging the longevity of carnation cv. Madam Collette cut flowers and restricting microbial growth in them. Cut carnations were treated with four essential oils: geranium, thyme, marjoram, and anise at concentrations of 0, 25, 50, and 75 mg/L. While treatment with all the essential oils prolonged the longevity of the cut flowers, thyme and marjoram oils were most effective at concentrations of 50 mg/L each. The vase life of thyme-treated and marjoram-treated carnations almost doubled to 18.5 days and 18.25 days, respectively, as compared to untreated flowers. Treatment with essential oils also led to an increase in water uptake by the cut flowers enhancing their relative water content (RWC). It also restricted the sharp decline of chlorophyll and total carbohydrates content of the flowers during their vase life period. Morphological features of the stem bases of treated and untreated carnations were analyzed using scanning electron microscopy (SEM). The stem ends of geranium and anise-treated carnations showed less bacterial growth than untreated flowers and no apparent xylem blockage was observed even after nine days of treatment. Furthermore, the presence of essential oils also reduced lipid peroxidation and free radical generation as observed by malondialdehyde (MDA) and H2O2 quantification, respectively. It also led to increased production of total phenols leading to enhanced membrane stability. The use of thyme and marjoram essential oils as antimicrobial preservatives and green antioxidants appears to have promising applications in both the industrial and scientific sectors.


Assuntos
Apiaceae , Dianthus , Geranium , Óleos Voláteis , Óleos Voláteis/farmacologia , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Carboidratos da Dieta
4.
Biology (Basel) ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552353

RESUMO

Alkaline soil inhibits the growth and productivity of chia plants (Salvia hispanica L.). Microalgae as biofertilizers have been reported to induce alkalinity tolerance and enhance yield and quality. However, limited information is known concerning the influence of microalgae application on medical plants, including chia. Our experiments were performed to evaluate the effect of microalgae strains of Arthrospira platensis, Chlorella vulgaris, Nostoc muscorum, and Anabaena azollae with two application methods, foliar spray and soil drench, on morpho-physiological and biochemical parameters, yield, seed and oil quality, and fatty acid profiles of chia plants cultivated under alkaline soil conditions, as well as the on soil microbial activity. The results obtained reveal that both application methods positively influenced the growth and productivity of chia plants. However, the foliar application showed significant differences in the herb's fresh and dry weights and leaf pigments, whereas the drenching application caused more effect than the foliar spray application at the reproductive stage. Untreated chia plants showed a slight decline in the growth, productivity, and antioxidant level with an increase in Na content. However, microalgae applications significantly ameliorated these impacts as they induced an enhancement in the growth, leaf pigments, total protein and carbohydrate contents, nutrient content, seed and oil yields, as well as an increase in linolenic and linoleic fatty acids, with a reduction in saturated fatty acids, namely, palmitic and lauric acid. Soil drenching generated an improvement in the soil microbial activity and caused a reduction in the pH. The treatment of A. platensis with drenching application resulted in higher seed and oil yield, with an increase of 124 and 263.3% in seed and oil yield, respectively.

5.
Plants (Basel) ; 11(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35736704

RESUMO

Salinity is linked to poor plant growth and a reduction in global food output. Therefore, there is an essential need for plant adaptation and mitigation of salinity stress conditions. Plants combat salinity stress influences by promoting a set of physiological, biochemical, and molecular actions. Tremendous mechanisms are being applied to induce plant stress tolerance, involving amino acid application. For evaluating the growth and productivity of Moringa oleifera trees grown under salt stress conditions, moringa has been cultivated under different levels of salinity and subjected to a foliar spray of proline (Pro) and phenylalanine (Phe) amino acids. Moringa plants positively responded to the lowest level of salinity as the leaves, inflorescences, seeds, and oil yields have been increased, but the growth and productivity slightly declined with increasing salinity levels after that. However, Pro and Phe applications significantly ameliorate these effects, particularly, Pro-treatments which decelerated chlorophyll and protein degradation and enhanced vitamin C, polyphenols, and antioxidant activity. A slight reduction in mineral content was observed under the high levels of salinity. Higher osmoprotectants (proline, protein, and total soluble sugars) content was given following Pro treatment in salted and unsalted plants. A significant reduction in oil yield was obtained as affected by salinity stress. Additionally, salinity exhibited a reduction in oleic acid (C18:1), linoleic (C18:2), and linolenic (C18:3) acids, and an increase in stearic (C18:0), palmitic (C16:0), eicosenoic (C20:2), and behenic (C22:0) acids. Generally, Pro and Phe treatments overcome the harmful effects of salinity in moringa trees by stimulating the osmoprotectants, polyphenols, and antioxidant activity, causing higher dry matter accumulation and better defense against salinity stress.

6.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501385

RESUMO

The major climate-related hazard to worldwide agricultural productivity is drought, which is becoming more common because of ongoing climate change, especially in the arid and semi-arid regions. Herein, we investigated the influence of biochar soil application at 0, (B1), 7.5 ha-1 (B2), and 15 t ha-1 (B3) on the productivity and drought-tolerance indices of wheat (Triticum aestivum L., cv. Sakha 93) grown in sandy soil under irrigation levels of 100 (I1), 80 (I2), and 60% (I3) of crop evapotranspiration (ETc), as well as soil properties based on non-weighing lysimeter units. Increasing water deficiency significantly decreased the actual evapotranspiration (ETa) values. A growing biochar rate caused a significant increase in ETa values, water use efficiency, and wheat productivity compared to the untreated control. Additionally, biochar supplementation revealed an improvement in soil quality as measured by the reduction in the bulk density and hydraulic conductivity with an increase in the total porosity and void ratio of the experimental soil. The correlation analysis exhibited a highly significant and positive correlation (0.98 **) between biological yield and grain yield traits. Therefore, it may be stated that these traits are the most significant components of the evaluated grain yield in wheat plants. The productivity of I1 plants was not significantly different and slightly higher than that of I2 plants. Therefore, it can be recommended that exposed wheat plants cultivated in sandy soil with I2 × B3 treatment significantly provide the highest yield while saving 20% of the irrigation water.

7.
Plants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685807

RESUMO

A shortages of soil nutrients resources and a lack of accessibility to them especially in calcareous soil are considered some of the main factors that limit plant production. In particular, the cultivation of the Moringa oleifera trees in this type of soil is of special interest given the increasing demand for every part of this tree. Several studies have focused on the production of its leaves as an herbaceous plant and not as a tree, but there has not been extensive research on its pods, seeds, and fixed oil production. In this sense, in this study, we provide an assessment of the use of fertilizers, vermicompost and NPK (as traditional minerals and as nanoparticles), in order to improve pods, seeds, and fixed oil contents, as indicators of the quality of the production of the Moringa oleifera trees in calcareous soil conditions. In this experiment, it was observed that all parameters and the yield of pods, seeds, and fixed oil of the Moringa oleifera tree were significantly improved by increasing the level of vermicompost and using NPK fertilization and combination treatments in both seasons of the study. The combination treatments of 10 and 20 ton ha-1 vermicompost plus NPK control produced the highest percentage of oleic acid with insignificant differences between them.

8.
Plants (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685950

RESUMO

Water shortage is a major problem limiting the expansion of green areas and landscapes. Using seawater as an alternative source of potable water is not a novel idea, but the issue of salt stress needs to be resolved. Salinity has a negative impact on growth and the aesthetic value of ornamental plants. In order to overcome these challenges, Lathyrus odoratus seeds were hydro-primed and halo-primed with silicon (Si) and silicon nanoparticles (SiNPs), and exposed to seawater levels. Seawater markedly reduced seed germination and growth of Lathyrus seedlings, but halo-priming was shown to significantly alleviate its negative effects. Broadly, SiNPs increased the germination percentage, reduced photosynthetic pigments and carbohydrates decrease, and enhanced water relations, despite having a negative effect on germination speed. Halo-priming significantly increased the proline content and the activities of certain enzymatic (SOD, APX and CAT) and nonenzymatic (phenolic and flavonoids) compounds, that positively influenced oxidative stress (lower MDA and H2O2 accumulation), resulting in seedlings with more salt stress tolerance. Halo-priming with Si or SiNPs enhanced the Si and K+ contents, and K+/Na+ ratio, associated with a reduction in Na+ accumulation. Generally, halo-priming with Si or SiNPs increased Lathyrus seedlings salt stress tolerance, which was confirmed using seawater treatments via improving germination percentage, seedlings growth and activation of the antioxidant machinery, which detoxifies reactive oxygen species (ROS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA