Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956629

RESUMO

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Assuntos
Antineoplásicos , Corantes , Prata , Têxteis , Têxteis/microbiologia , Corantes/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Prata/farmacologia , Prata/química , Fusarium/efeitos dos fármacos , Streptomyces/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas Metálicas/química , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral
2.
Chem Biodivers ; : e202401238, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075025

RESUMO

The evolutionarily conserved extracellular signal-regulated kinase 2 (ERK2) is involved in regulating cellular signaling in both normal and pathological conditions. ERK2 expression is critical for human development, while hyperactivation is a major factor in tumor progression. Up to now, there have been no approved inhibitors that target ERK2, and as such, here we report on screening of a naturally occurring plant-based anticancerous compound-activity-target (NPACT) database for prospective ERK2 inhibitors. More than 1,500 phytochemicals were screened using in-silico molecular docking and molecular dynamics (MD) approaches. NPACT compounds with a docking score lower than a co-crystallized LHZ inhibitor (calc.-10.5 kcal/mol) were subjected to MD simulations. Binding energies (ΔGbinding) of inhibitor-ERK2 complexes over the MD course were estimated using an MM-GBSA approach. Based on MM-GBSA//100 ns MD simulations, the steroid zhankuic acid C (NPACT01034) demonstrated greater binding affinity against ERK2 protein than LHZ, with ΔGbinding values of -50.0 and -47.7 kcal/mol, respectively. Structural and energetical analyses throughout the MD course demonstrated stabilization of zhankuic acid C complexed with ERK2 protein. The anticipated ADMET properties of zhankuic acid C indicated minimal toxicity. Moreover, in-silico evaluation of fourteen ERK2 inhibitors in clinical trials demonstrated the higher binding affinity of zhankuic acid C towards ERK2 protein.

3.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335116

RESUMO

Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.


Assuntos
Anti-Infecciosos , Micorrizas , Óleos Voláteis , Pelargonium , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Minerais , Micorrizas/metabolismo , Óleos Voláteis/química , Pelargonium/química
4.
Environ Res ; 198: 111199, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932479

RESUMO

In the present study, Allium cepa leaf extract was utilized to reduce the silver nitrate into the nanoscale range of silver ions (Ag NPs). The biosynthesized Ag NPs were extensively characterized by X-ray diffraction analysis (XRD), Dynamic light scattering analysis (DLS), UV-Visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). The antioxidant activity of synthesized Ag NPs was verified by DPPH assay. From the results obtained from XRD and DLS studies, the size of Ag NPs was determined to be around 54.3 nm. The measured zeta potential value of -19.1 mV confirms the excellent stability of biosynthesized Ag NPs. TEM analyses reveal that the biosynthesized Ag NPs have a spherical structure of 13 nm in size. The presence of various functional groups was confirmed through FTIR studies and EDAX verifies the weight percentage of silver content in biosynthesized nanoparticles to be 30.33%. In the present study, anti-cancer activity was carried out by using breast cancer cell line MCF-7. Further, silver nanoparticles exhibited antimicrobial effectiveness against gram-positive Bacillus cereus and gram-negative Escherichia coli. The MTT assay also showed better cytotoxic activity against the MCF- 7 cell line.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Cebolas , Extratos Vegetais/farmacologia , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Bioprocess Biosyst Eng ; 39(5): 793-805, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26861651

RESUMO

Alkaline protease from alkaliphilic Bacillus sp. NPST-AK15 was immobilized onto functionalized and non-functionalized rattle-type magnetic core@mesoporous shell silica (RT-MCMSS) nanoparticles by physical adsorption and covalent attachment. However, the covalent attachment approach was superior for NPST-AK15 protease immobilization onto the activated RT-MCMSS-NH2nanoparticles and was used for further studies. In comparison to free protease, the immobilized enzyme exhibited a shift in the optimal temperature and pH from 60 to 65 °C and pH 10.5-11.0, respectively. While free protease was completely inactivated after treatment for 1 h at 60 °C, the immobilized enzyme maintained 66.5% of its initial activity at similar conditions. The immobilized protease showed higher k cat and K m , than the soluble enzyme by about 1.3-, and 1.2-fold, respectively. In addition, the results revealed significant improvement of NPST-AK15 protease stability in variety of organic solvents, surfactants, and commercial laundry detergents, upon immobilization onto activated RT-MCMSS-NH2nanoparticles. Importantly, the immobilized protease maintained significant catalytic efficiency for ten consecutive reaction cycles, and was separated easily from the reaction mixture using an external magnetic field. To the best of our knowledge this is the first report about protease immobilization onto rattle-type magnetic core@mesoporous shell silica nanoparticles that also defied activity-stability tradeoff. The results clearly suggest that the developed immobilized enzyme system is a promising nanobiocatalyst for various bioprocess applications requiring a protease.


Assuntos
Proteínas de Bactérias/química , Detergentes/química , Endopeptidases/química , Nanopartículas , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Endopeptidases/isolamento & purificação , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Int J Mol Sci ; 17(2)2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26840303

RESUMO

The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 µg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.


Assuntos
Proteínas de Bactérias/química , Endopeptidases/química , Enzimas Imobilizadas/química , Nanosferas/química , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Porosidade , Dióxido de Silício/química
7.
Extremophiles ; 19(5): 961-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159877

RESUMO

Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Serina Proteases/química , Cloreto de Cálcio/química , Detergentes/química , Estabilidade Enzimática , Temperatura Alta , Salinidade
8.
Environ Pollut ; 342: 123076, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048873

RESUMO

Most bacterial disinfectants contain high levels of extremely toxic and environmental hazardous chemicals, which pose a significant threat to the ecosystem. Semiconductor photocatalysis exhibits attractive prospects as an emerging greener technology for waste water disinfection. However, the fast recombination of charge carriers limits its practical application. Herein, self-assembled polymeric feather-like g-C3N4 (GCN) nanosheets modified with ferromagnetic CuFe2O4 (CFO) nanospheres were successfully applied as a reusable visible light photocatalytic disinfectant. As expected, the g-C3N4/CuFe2O4 (GCF) nanohybrid displayed superior photocatalytic inactivation efficiency of 0.157log within 120 min towards Escherichia coli DH5α (E. coli) compared with pristine GCN and CFO. The characterization results revealed the synergistic heterostructure interfaces, high surface area, and the transformative self-assembly of GCN to feather-like structure providing a rich active site for improved charge separation efficiency, and wide spectral response, therefore the superior performance of GCF. The radical trapping assay proclaimed that both O2•- and •OH radical played major role in the photocatalytic inactivation among the other reactive oxygen species (ROS). Furthermore, the chemical oxygen demand (COD), protein estimation, and DNA estimation assay results validated the cell damage caused by the photocatalyst. Besides that, GCN showed applicability in real-time wastewater samples with improved efficiency than in the saline solution. The excellent magnetic characteristics facilitated the recycling of the catalyst with insignificant leaching, magnetic induction, and distinguished separation. The results of this work signify the well-designed GCF as a high-performance and reusable photocatalyst for real-world pathogenic bacterial disinfection operations.


Assuntos
Desinfecção , Águas Residuárias , Bactérias , Catálise , Desinfetantes/farmacologia , Desinfecção/métodos , Ecossistema , Escherichia coli/fisiologia , Luz
9.
RSC Adv ; 14(31): 22408-22417, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010916

RESUMO

Herein, the potential of ZO3 and ZF2 aerogen-comprising molecules (where Z = Ar, Kr, and Xe) to engage in σ-, lp-, and π-hole site-based interactions was comparatively studied using various ab initio computations. For the first time, a premier in-depth elucidation of the external electric field (EEF) influence on the strength of the σ-, lp-, and π-hole site-based interactions within the ZO3/ZF2⋯NH3 and ⋯NCH complexes was addressed using oriented EEF with disparate magnitude. Upon the energetic features, σ-hole site-based interactions were noticed with the most prominent preferability in comparison to lp- and π-hole analogs. This finding was ensured by the negative interaction energy values of -11.65, -3.50, and -2.74 kcal mol-1 in the case of σ-, lp-, and π-hole site-based interactions within the XeO3⋯ and XeF2⋯NH3 complexes, respectively. Detailedly, the strength of the σ- and lp-hole site-based interactions directly correlated with the atomic size of the aerogen atoms and the magnitude of the positively oriented EEF. Unexpectedly, an irregular correlation was noticed for the interaction energies of the π-hole site-based interactions with the size of the π-hole. Interestingly, the π-hole site-based interactions within Kr-comprising complexes exhibited higher negative interaction energies than the Ar- and Xe-comprising counterparts. Notwithstanding, a direct proportion between the interaction energies of the π-hole site-based interactions and π-hole size was obtained by employing EEF along the positive orientation with high strength. The present outcomes would be a fundamental basis for forthcoming progress in studying the σ-, lp-, and π-hole site-based interactions within aerogen-comprising complexes and their pertinent applications in materials science and crystal engineering.

10.
Clin Chim Acta ; 561: 119818, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879066

RESUMO

INTRODUCTION: Breast cancer, one of the most aggressive types of cancer, poses significant challenges for diagnosis and treatment. Emerging as a promising biomarker, circulating tumor DNA (ctDNA) can be used to identify and monitor disease risk. This study sought to examine the impact of mutations in various genes on the progression of breast cancer. Genetic variants associated with breast cancer have been examined in individuals diagnosed with the disease worldwide. METHODS: Fifty female participants underwent breast cancer testing. Sanger sequencing was used to analyze peripheral blood DNA from these individuals to detect disease-causing mutations in the BRCA1, BRCA2, PTEN, TP53, and ATM genes. Genetic alterations linked to breast cancer were screened and the findings were compared with those of tumor genes. RESULTS: The development of hereditary/early onset breast cancer in this study was significantly associated with mutations in ATM, PTEN, TP53, and BRCA1/BRCA2, according to the analysis of sequencing data. CONCLUSION: This study demonstrates the feasibility of analyzing ctDNA in patients with breast cancer (BC) undergoing palliative treatment using an SS-based technique.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Mutação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Feminino , Pessoa de Meia-Idade , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Adulto , Análise Mutacional de DNA , Idoso , Proteína BRCA1/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , PTEN Fosfo-Hidrolase/genética , Proteína BRCA2/genética
11.
ACS Omega ; 9(20): 21805-21821, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799316

RESUMO

Ranunculus hirtellus, also known as crowfoot (buttercup), has a rich tradition of use in various biological contexts. While antibacterial studies on extracts from this plant have been conducted, the phytochemical composition, antioxidant properties, and antidiabetic effects remain unexplored. In this study, the phytochemical, antioxidant, and antidiabetic effects of its methanol and aqueous extracts were investigated. Our approach involved gas chromatography-mass spectrometry (GC/MS), alongside quantitative and qualitative methods, for phytochemical profiles. Additionally, concerning biological activities, the antioxidant effect was assessed through 2, 2-diphenyl-pieryl hydrazyl (DPPH) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) assays, while the antidiabetic effect was examined through the α-amylase inhibitory assay. The chloroform, ethyl acetate, and n-hexane extracts of R. hirtellus revealed the presence of 14 distinct compounds. In the methanol extract, sterols, quinones, glycosides, lactones, lignin, and flavonoids were identified. The aqueous extract contained sterols, alkaloids, glycosides, triterpenes, terpenoids, quinones, leucoanthocyanins, and lactones. The total flavonoid content (TFC), total phenolic content (TPC), total tannin content (TTC), and reducing sugar content (RDC) were determined in plant extracts, and a linear relationship was found between these parameters. Additionally, the TTC, TPC, and TFC values for both extracts hovered around 0.3786, 0.0476, and 0.1864 µg/mL, respectively, across all plant concentrations, while RDC ranged from 0.9336 to 1.0119 µg/mL in all four extracts. In vitro assays demonstrated dose-dependent antidiabetic activity in both methanolic and aqueous extracts by inhibiting α-amylase. Furthermore, the antioxidant activity observed in the DPPH assay was greater in the aqueous extract compared with the methanolic extract. In addition, the ethyl acetate extract exhibited the highest inhibition among chloroform and n-hexane in the ABTS assay. The results suggest that R. hirtellus can be a potential source of natural antioxidants and antidiabetic agents, and further studies are warranted to investigate the underlying mechanisms of its therapeutic effects.

13.
Biomed Pharmacother ; 172: 116274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364738

RESUMO

PURPOSE: Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS: Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS: DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-ß1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION: The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Óxido de Zinco , Animais , Ratos , Zinco , Óxido de Zinco/farmacologia , Caspase 3 , NF-kappa B , Ácido Gálico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transdução de Sinais , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico
14.
RSC Adv ; 14(9): 5754-5763, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362085

RESUMO

In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.

15.
Am J Transl Res ; 16(3): 738-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586115

RESUMO

OBJECTIVES: While dysregulation of DSCC1 (DNA Replication And Sister Chromatid Cohesion 1) has been established in breast cancer and colorectal cancer, its associations with other tumors remain unclear. Therefore, this study was launched to explore the role of DSCC1 in pan-cancer. METHODOLOGY: In this study, we investigate the biological functions of DSCC1 across 33 solid tumors, elucidating its role in promoting oncogenesis and progression in various cancers through comprehensive analysis of multi-omics data. RESULTS: We conducted a comprehensive analysis of DSCC1 expression using RNA-seq data from TCGA and GTEx databases across 30 cancer types. Striking variations were observed, with significant overexpression of DSCC1 identified in numerous cancers. Elevated DSCC1 level was strongly associated with poorer prognosis, shorter survival, and advanced tumor stages in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), as indicated by Kaplan-Meier curves and GEPIA2 analysis. Further investigation into the molecular mechanisms revealed reduced DNA methylation in the DSCC1 promoter region in KIRP, LIHC, and LUAD, supporting enhanced RNA transcription. Protein expression analysis via the Human Protein Atlas (HPA) corroborated mRNA expression findings, showcasing elevated DSCC1 protein in KIRP, LIHC, and LUAD tissues. Mutational analysis using cBioPortal revealed alterations in 0.4% of KIRP, 17% of LIHC, and 5% of LUAD samples, predominantly characterized by amplification. Immune cell infiltration analysis demonstrated robust positive correlations between DSCC1 expression and CD8+ T cells, CD4+ T cells, and B cells, influencing the tumor microenvironment. STRING and gene enrichment analyses unveiled DSCC1's involvement in critical pathways, emphasizing its multifaceted impact. Notably, drug sensitivity analysis highlighted a significant correlation between DSCC1 mRNA expression and responses to 78 anticancer treatments, suggesting its potential as a predictive biomarker and therapeutic target for KIRP, LIHC, and LUAD. Finally, immunohistochemistry staining of clinical samples validated computational results, confirming elevated DSCC1 protein expression. CONCLUSION: Overall, this study provides comprehensive insights into the pivotal role of DSCC1 in KIRP, LIHC, and LUAD initiation, progression, and therapeutic responsiveness, laying the foundation for further investigations and personalized treatment strategies.

16.
Heliyon ; 10(7): e28614, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590851

RESUMO

Some plant species may exhibit new microenvironments which lead to significant changes in the cover and diversity of the coexisting species. In this investigation, we evaluated the effects of Plantago lagopus L. on the cover and diversity of the associated plant species in the urban vegetation. A total of 70 plots were conducted in sites with- and without this species in urban gardens. Cover of the associated species and different diversity indices including species richness, Shannon-Wiener, evenness, and Simpson indices were measured. The allelopathic potential of P. lagopus was verified using its rhizosphere and non-rhizosphere soils on two target species existing within the same environment. Some soil criteria and seed sizes of the associated species were also determined. Most of the coexisting weeds were reduced in terms of their cover in plots with Plantago. The reduction of plant diversity depended on its cover. Besides, the aboveground biomass was reduced in sites comprising Plantago. The degree of inhibition was not related to the seed size of the species found. This species reduced the incident solar radiation and the local temperature over the soil surface. The locations exhibiting such species contained lower contents of available potassium and zinc. Rhizosphere soil of P. lagopus substantially inhibited germination and growth of Amaranthus viridis, but it didn't do so for Medicago lupulina. Reduction in cover, diversity, and biomass of the urban weeds associated with P. lagopus may be related to the reduction of received solar radiation, soil temperature, and nutrient availability. The allelopathic potential of P. lagopus may have a partial role in this reduction. These results suggest that P. lagopus may create a microenvironment of new conditions not favorable for most of the coexisting species.

17.
Front Immunol ; 15: 1347420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686374

RESUMO

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Assuntos
Alginatos , Hesperidina , Hidrogéis , NF-kappa B , Álcool de Polivinil , Fator de Necrose Tumoral alfa , Hesperidina/farmacologia , Hesperidina/química , Álcool de Polivinil/química , Humanos , Alginatos/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hidrogéis/química , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cicatrização/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico
18.
J Fungi (Basel) ; 9(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998874

RESUMO

Textile dyes are one of the major water pollutants released into water in various ways, posing serious hazards for both aquatic organisms and human beings. Bioremediation is a significantly promising technique for dye decolorization. In the present study, the fungal strain Lasiodiplodia sp. was isolated from the fruiting bodies of Schizophyllum for the first time. The isolated fungal strain was examined for laccase enzyme production under solid-state fermentation conditions with wheat bran (WB) using ABTS and 2,6-Dimethoxyphenol (DMP) as substrates, then the fermented wheat bran (FWB) was evaluated as a biosorbent for Congo red dye adsorption from aqueous solutions in comparison with unfermented wheat bran. A Box-Behnken design was used to optimize the dye removal by FWB and to analyze the interaction effects between three factors: fermentation duration, pH, and dye concentration. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the changes in the physical and chemical characteristics of wheat bran before and after fermentation. An additional experiment was conducted to investigate the ability of the Lasiodiplodia sp. YZH1 to remove Congo red in the dye-containing liquid culture. The results showed that laccase was produced throughout the cultivation, reaching peak activities of ∼6.2 and 22.3 U/mL for ABTS and DMP, respectively, on the fourth day of cultivation. FWB removed 89.8% of the dye (100 mg L-1) from the aqueous solution after 12 h of contact, whereas WB removed only 77.5%. Based on the Box-Behnken design results, FWB achieved 93.08% dye removal percentage under the conditions of 6 days of fermentation, pH 8.5, and 150 mg L-1 of the dye concentration after 24 h. The fungal strain removed 95.3% of 150 mg L-1 of the dye concentration after 8 days of inoculation in the dye-containing liquid culture. These findings indicate that this strain is a worthy candidate for dye removal from environmental effluents.

19.
Extremophiles ; 16(4): 659-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669507

RESUMO

The present study was aimed to localize and characterize hexavalent chromate [Cr(VI)] reductase activity of the extreme alkaliphilic Amphibacillus sp. KSUCr3 (optimal growth pH 10.5). The resting cells were able to reduce about 62 % of the toxic heavy metal Cr(VI) at initial concentration of 200 µM within 30 min. Cell permeabilization resulted in decrease of Cr(VI) reduction in comparison to untreated cells. Enzymatic assays of different sub-cellular fractions of Amphibacillus sp. KSUCr3 demonstrated that the Cr(VI) reductase was mainly associated with the membranous fraction and expressed constitutively. In vitro studies of the crude enzyme indicated that copper ion was essential for Cr(VI) reductase activity. In addition, Ca²âº and Mn²âº slightly stimulated the chromate reductase activity. Glucose was the best external electron donor, showing enhancement of the enzyme activity by about 3.5-fold. The K (m) and V (max) determined for chromate reductase activity in the membranous fraction were 23.8 µM Cr(VI) and 72 µmol/min/mg of protein, respectively. Cr(VI) reductase activity was maximum at 40 °C and pH 7.0 and it was significantly inhibited in the presence of disulfide reducers (2-mercaptoethanol), ion chelating agent (EDTA), and respiratory inhibitors (CN and Azide). Complete reduction of 100 and 200 µM of Cr(VI) by membrane associated enzyme were observed within 40 and 180 min, respectively. However, it should be noted that biochemical characterization has been done with crude enzyme only, and that final conclusion can only be drawn with the purified enzyme.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/metabolismo , Cromatos/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
20.
J Plant Res ; 125(1): 173-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21445718

RESUMO

Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.


Assuntos
Secas , Osmose , Ácido Salicílico/farmacologia , Triticum/efeitos dos fármacos , Triticum/fisiologia , Água/fisiologia , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Carotenoides/metabolismo , Clorofila/metabolismo , Compostos Inorgânicos/metabolismo , Osmose/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solubilidade/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA