Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; 35(4): e21468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687752

RESUMO

Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo
2.
Nanomedicine ; 40: 102498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838994

RESUMO

Acute respiratory distress syndrome (ARDS) is a highly morbid pulmonary disease characterized by hypoxic respiratory failure. Its pathogenesis is characterized by unrestrained oxidative stress and inflammation, with long-term sequelae of pulmonary fibrosis and diminished lung function. Unfortunately, prior therapeutic ARDS trials have failed and therapy is limited to supportive measures. Free radical scavenging cerium oxide nanoparticles (CNP) conjugated to the anti-inflammatory microRNA-146a (miR146a), termed CNP-miR146a, have been shown to prevent acute lung injury in a pre-clinical model. In this study, we evaluated the potential of delayed treatment with CNP-miR146a at three or seven days after injury to rescue the lung from acute injury. We found that intratracheal CNP-miR146a administered three days after injury lowers pulmonary leukocyte infiltration, reduce inflammation and oxidative stress, lower pro-fibrotic gene expression and collagen deposition in the lung, and ultimately improve pulmonary function.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Nanopartículas , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Cério , Humanos , Pulmão/patologia , Lesão Pulmonar/patologia , Tempo para o Tratamento
3.
Nanomedicine ; 34: 102388, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753282

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating pulmonary disease with significant in-hospital mortality and is the leading cause of death in COVID-19 patients. Excessive leukocyte recruitment, unregulated inflammation, and resultant fibrosis contribute to poor ARDS outcomes. Nanoparticle technology with cerium oxide nanoparticles (CNP) offers a mechanism by which unstable therapeutics such as the anti-inflammatory microRNA-146a can be locally delivered to the injured lung without systemic uptake. In this study, we evaluated the potential of the radical scavenging CNP conjugated to microRNA-146a (termed CNP-miR146a) in preventing acute lung injury (ALI) following exposure to bleomycin. We have found that intratracheal delivery of CNP-miR146a increases pulmonary levels of miR146a without systemic increases, and prevents ALI by altering leukocyte recruitment, reducing inflammation and oxidative stress, and decreasing collagen deposition, ultimately improving pulmonary biomechanics.


Assuntos
Bleomicina/efeitos adversos , Cério , Sistemas de Liberação de Medicamentos , MicroRNAs , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Bleomicina/farmacologia , COVID-19/genética , COVID-19/metabolismo , Cério/química , Cério/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , MicroRNAs/química , MicroRNAs/farmacologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
4.
J Org Chem ; 82(3): 1538-1544, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032758

RESUMO

We report the design, synthesis, and electron spin relaxation properties of hydrophilic tetracarboxylate ester pyrroline nitroxides 1 and 2, which serve as models in the search for new spin labels for DEER distance measurement at room temperature. The nitroxides are designed to have the methyl groups further away from the N-O spin site to decrease the inequivalent couplings of the unpaired electron to the methyl protons that shorten Tm at T > 70 K in currently used labels. The key step in the synthesis of 1 and 2 is the reaction of the dianion of pyrrole-1,2,5-tricarboxylic acid tert-butyl ester dimethyl ester with electrophiles such as methyl chloroformate and methyl bromoacetate. Structures of 1 and 2 are confirmed by X-ray crystallography. Studies of electron spin relaxation rates in rigid trehalose/sucrose matrices reveal approximately temperature independent values of 1/Tm for 1 and 2 up to about 160 K and modest temperature dependence up to 295 K, demonstrating that increasing the distance between the nitroxide moiety and methyl groups is effective in lengthening Tm at T > 70 K.


Assuntos
Ácidos Carboxílicos/química , Óxidos de Nitrogênio/química , Pirróis/química , Ácidos Carboxílicos/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Estrutura Molecular , Óxidos de Nitrogênio/síntese química , Pirróis/síntese química
5.
Chemphyschem ; 16(3): 528-31, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488257

RESUMO

Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 µM BMPO-OH.


Assuntos
Radical Hidroxila/química , Detecção de Spin , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica
6.
Magn Reson Chem ; 53(4): 280-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25504559

RESUMO

Carboxy-substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino-substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X-band for the protonated and deprotonated forms of two amino-substituted triarylmethyl radicals. Comparison with relaxation times for carboxy-substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino-substituted triarylmethyl radicals facilitate spectral-spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image.


Assuntos
Elétrons , Compostos de Tritil/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fatores de Tempo
7.
Sci Rep ; 14(1): 13862, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879688

RESUMO

Acute kidney injury (AKI) is a systemic disease that affects energy metabolism in various remote organs in murine models of ischemic AKI. However, AKI-mediated effects in the liver have not been comprehensively assessed. After inducing ischemic AKI in 8-10-week-old, male C57BL/6 mice, mass spectrometry metabolomics revealed that the liver had the most distinct phenotype 24 h after AKI versus 4 h and 7 days. Follow up studies with in vivo [13C6]-glucose tracing on liver and kidney 24 h after AKI revealed 4 major findings: (1) increased flux through glycolysis and the tricarboxylic (TCA) cycle in both kidney and liver; (2) depleted hepatic glutathione levels and its intermediates despite unchanged level of reactive oxygen species, suggesting glutathione consumption exceeds production due to systemic oxidative stress after AKI; (3) hepatic ATP depletion despite unchanged rate of mitochondrial respiration, suggesting increased ATP consumption relative to production; (4) increased hepatic and renal urea cycle intermediates suggesting hypercatabolism and upregulation of the urea cycle independent of impaired renal clearance of nitrogenous waste. Taken together, this is the first study to describe the hepatic metabolome after ischemic AKI in a murine model and demonstrates that there is significant liver-kidney crosstalk after AKI.


Assuntos
Injúria Renal Aguda , Metabolismo Energético , Glutationa , Rim , Fígado , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Fígado/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Masculino , Camundongos , Isquemia/metabolismo , Metabolômica/métodos , Modelos Animais de Doenças , Estresse Oxidativo , Glicólise , Metaboloma
8.
Mol Imaging Biol ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193807

RESUMO

PURPOSE: Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains. PROCEDURES: In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS - specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR. RESULTS: As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration. CONCLUSIONS: We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.

9.
Mol Imaging Biol ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821714

RESUMO

PURPOSE: Oxidative stress is proposed to be critical in acute lung disease, but methods to monitor radicals in lungs are lacking. Our goal is to develop low-frequency electron paramagnetic resonance (EPR) methods to monitor radicals that contribute to the disease. PROCEDURES: Free radicals generated in a lipopolysaccharide-induced mouse model of acute respiratory distress syndrome reacted with cyclic hydroxylamines CPH (1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride) and DCP-AM-H (4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid), which were converted into the corresponding nitroxide radicals, CP• and DCP•. The EPR signals of the nitroxide radicals in excised lungs were imaged with a 1 GHz EPR spectrometer/imager that employs rapid scan technology. RESULTS: The small numbers of nitroxides formed by reaction of the hydroxylamine with superoxide result in low signal-to-noise in the spectra and images. However, since the spectral properties of the nitroxides are known, we can use prior knowledge of the line shape and hyperfine splitting to fit the noisy data, yielding well-defined spectra and images. Two-dimensional spectral-spatial images are shown for lung samples containing (4.5 ± 0.5) ×1014 CP• and (9.9 ± 1.0) ×1014 DCP• nitroxide spins. These results suggest that a probe that accumulates in cells gives a stronger nitroxide signal than a probe that is more easily washed out of cells. CONCLUSION: The nitroxide radicals in excised mouse lungs formed by reaction with hydroxylamine probes CPH and DCP-AM-H can be imaged at 1 GHz.

10.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204311

RESUMO

Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.

11.
Clin Cancer Res ; 28(11): 2409-2424, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344040

RESUMO

PURPOSE: Tumor relapse after radiotherapy is a major hurdle in treating pediatric H3K27M-mutant diffuse midline gliomas (DMG). Radiotherapy-induced stress increases association of BCL2 family of proteins with BH3 pro-apoptotic activators preventing apoptosis. We hypothesized that inhibition of radiotherapy-induced BCL2 with a clinically relevant inhibitor, venetoclax, will block BCL2 activity leading to increased apoptosis. BCL2 has never been implicated in DMG as a radiotherapy-induced resistant mechanism. EXPERIMENTAL DESIGN: We performed an integrated genomic analysis to determine genes responsible for radioresistance and a targeted drug screen to identify drugs that synergize with radiation in DMG. Effect of venetoclax on radiation-naïve and 6 Gy radiation on cells was evaluated by studying cell death, changes in BCL2 phosphorylation, reactive oxygen species (ROS), and apoptosis, as well as BCL2 association with BH3 apoptosis initiators. The efficacy of combining venetoclax with radiation was evaluated in vivo using orthotopic xenograft models. RESULTS: BCL2 was identified as a key regulator of tumor growth after radiation in DMGs. Radiation sensitizes DMGs to venetoclax treatment independent of p53 status. Venetoclax as a monotherapy was not cytotoxic to DMG cells. Postradiation venetoclax treatment significantly increased cell death, reduced BCL2-BIM association, and augmented mitochondrial ROS leading to increased apoptosis. Combining venetoclax with radiotherapy significantly enhanced the survival of mice with DMG tumors. CONCLUSIONS: This study shows that venetoclax impedes the antiapoptotic function of radiation-induced BCL2 in DMG, leading to increased apoptosis. Results from these preclinical studies demonstrate the potential use of the BCL2 inhibitor venetoclax combined with radiotherapy for pediatric DMG.


Assuntos
Antineoplásicos , Glioma , Animais , Antineoplásicos/farmacologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Radiação Ionizante , Espécies Reativas de Oxigênio , Sulfonamidas
12.
Adv Redox Res ; 52022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38273965

RESUMO

Extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and vasculature. A common human single nucleotide polymorphism (SNP) in the matrix binding region of EC-SOD leads to a single amino acid substitution, R213G, and alters EC-SOD tissue binding affinity. The change in tissue binding affinity redistributes EC-SOD from tissue to extracellular fluids. Mice (R213G mice) expressing a knock-in of this EC-SOD SNP exhibit elevated plasma and reduced lung EC-SOD content and activity and are protected against bleomycin-induced lung injury and inflammation. It is unknown how the redistribution of EC-SOD alters site-specific redox-regulated molecules relevant for protection. In this study, we tested the hypothesis that the change in the local EC-SOD content would influence not only the extracellular redox microenvironment where EC-SOD is localized but also protect the intracellular redox status of the lung. Mice were treated with bleomycin and harvested 7 days post-treatment. Superoxide levels, measured by electron paramagnetic resonance (EPR), were lower in plasma and Bronchoalveolar lavage fluid (BALF) cells in R213G mice compared to wild-type (WT) mice, while lung cellular superoxide levels in R213G mice were not elevated post-bleomycin compared to WT mice despite low lung EC-SOD levels. Lung glutathione redox potential (EhGSSG), determined by HPLC and fluorescence, was more oxidized in WT compared to R213G mice. In R213G mice, lung mitochondrial oxidative stress was reduced shown by mitochondrial superoxide level measured by EPR in lung and the resistance to bleomycin-induced cardiolipin oxidation. Bleomycin treatment suppressed mitochondrial respiration in WT mice. Mitochondrial function was impaired at baseline in R213G mice but did not exhibit further suppression in respiration post-bleomycin. Collectively, the results indicate that R213G variant preserves intracellular redox state and protects mitochondrial function in the setting of bleomycin-induced inflammation.

13.
Aging Cell ; 21(9): e13674, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934931

RESUMO

Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Proteína Desacopladora 2 , Idoso , Animais , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Miofibroblastos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
14.
Sci Rep ; 12(1): 643, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022484

RESUMO

Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia-reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


Assuntos
Injúria Renal Aguda
15.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218188

RESUMO

Cancers reprogram their metabolism to adapt to environmental changes. In this study, we examined the consequences of altered expression of the mitochondrial enzyme carnitine palmitoyl transferase I (CPT1A) in prostate cancer (PCa) cell models. Using transcriptomic and metabolomic analyses, we compared LNCaP-C4-2 cell lines with depleted (knockdown (KD)) or increased (overexpression (OE)) CPT1A expression. Mitochondrial reactive oxygen species (ROS) were also measured. Transcriptomic analysis identified ER stress, serine biosynthesis and lipid catabolism as significantly upregulated pathways in the OE versus KD cells. On the other hand, androgen response was significantly downregulated in OE cells. These changes associated with increased acyl-carnitines, serine synthesis and glutathione precursors in OE cells. Unexpectedly, OE cells showed increased mitochondrial ROS but when challenged with fatty acids and no androgens, the Superoxide dismutase 2 (SOD2) enzyme increased in the OE cells, suggesting better antioxidant defenses with excess CPT1A expression. Public databases also showed decreased androgen response correlation with increased serine-related metabolism in advanced PCa. Lastly, worse progression free survival was observed with increased lipid catabolism and decreased androgen response. Excess CPT1A is associated with a ROS-mediated stress phenotype that can support PCa disease progression. This study provides a rationale for targeting lipid catabolic pathways for therapy in hormonal cancers.

16.
Sci Rep ; 10(1): 280, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937874

RESUMO

Chronic hypoxia leads to pathologic remodeling of the pulmonary vasculature and pulmonary hypertension (PH). The antioxidant enzyme extracellular superoxide dismutase (SOD3) protects against hypoxia-induced PH. Hyaluronan (HA), a ubiquitous glycosaminoglycan of the lung extracellular matrix, is rapidly recycled at sites of vessel injury and repair. We investigated the hypothesis that SOD3 preserves HA homeostasis by inhibiting oxidative and enzymatic hyaluronidase-mediated HA breakdown. In SOD3-deficient mice, hypoxia increased lung hyaluronidase expression and activity, hyaluronan fragmentation, and effacement of HA from the vessel wall of small pulmonary arteries. Hyaluronan fragmentation corresponded to hypoxic induction of the cell surface hyaluronidase-2 (Hyal2), which was localized in the vascular media. Human pulmonary artery smooth muscle cells (HPASMCs) demonstrated hypoxic induction of Hyal2 and SOD-suppressible hyaluronidase activity, congruent to our observations in vivo. Fragmentation of homeostatic high molecular weight HA promoted HPASMC proliferation in vitro, whereas pharmacologic inhibition of hyaluronidase activity prevented hypoxia- and oxidant-induced proliferation. Hypoxia initiates SOD3-dependent alterations in the structure and regulation of hyaluronan in the pulmonary vascular extracellular matrix. These changes occurred soon after hypoxia exposure, prior to appearance of PH, and may contribute to the early pathogenesis of this disease.


Assuntos
Ácido Hialurônico/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia , Animais , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ácido Hialurônico/análise , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/enzimologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Regulação para Cima
17.
Oxid Med Cell Longev ; 2020: 6392629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587663

RESUMO

Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (-)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 µM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 µM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 µM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 µM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.


Assuntos
Catequina/farmacologia , Endotélio Vascular/patologia , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Antimicina A/farmacologia , Respiração Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Endotélio Vascular/efeitos dos fármacos , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Superóxidos/metabolismo
18.
Curr Opin Toxicol ; 13: 68-73, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31289762

RESUMO

Bleomycin is a commonly used cancer therapeutic that is associated with oxidative stress leading to pulmonary toxicity. Bleomycin has been used in animal studies to model pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary hypertension secondary to interstitial lung disease. The toxicity with bleomycin is initiated by direct oxidative damage, which then leads to subsequent inflammation and fibrosis mediated by generation of both extracellular ROS and intracellular ROS. While most studies focus on the intracellular ROS implicated in TGFß signaling and fibrosis, the changes in the extracellular redox environment, particularly with the initiation of early inflammation, is also critical to the pathogenesis of bleomycin induced injury and fibrosis. In this review, we focus on the role of extracellular redox environment in bleomycin toxicity, with attention to the generation of extracellular ROS, alterations in the redox state of extracellular thiols, and the central role of the extracellular isoform of superoxide dismutase in the development of bleomycin induced injury and fibrosis.

19.
J Vis Exp ; (143)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30688300

RESUMO

The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data. Cyclic hydroxylamine spin probes react selectively with superoxide or other radicals to generate a nitroxide signal that can be quantified by EPR spectroscopy. Cell-permeable spin probes and spin probes designed to accumulate rapidly in the mitochondria allow for the determination of superoxide concentration in different cellular compartments. In cultured cells, the use of cell permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) along with and without cell-impermeable superoxide dismutase (SOD) pretreatment, or use of cell-permeable PEG-SOD, allows for the differentiation of extracellular from cytosolic superoxide. The mitochondrial 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] piperidinium dichloride (mito-TEMPO-H) allows for measurement of mitochondrial ROS (predominantly superoxide). Spin probes and EPR spectroscopy can also be applied to in vivo models. Superoxide can be detected in extracellular fluids such as blood and alveolar fluid, as well as tissues such as lung tissue. Several methods are presented to process and store tissue for EPR measurements and deliver intravenous 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) spin probe in vivo. While measurements can be performed at room temperature, samples obtained from in vitro and in vivo models can also be stored at -80 °C and analyzed by EPR at 77 K. The samples can be stored in specialized tubing stable at -80 °C and run at 77 K to enable a practical, efficient, and reproducible method that facilitates storing and transferring samples.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Temperatura , Animais , Antimicina A/farmacologia , Bleomicina , Líquido da Lavagem Broncoalveolar , Bovinos , Compartimento Celular , Pulmão/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Células RAW 264.7 , Superóxidos/metabolismo
20.
Free Radic Biol Med ; 141: 244-252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238128

RESUMO

Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4+ T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat). Tat is produced in high levels during infection and secreted from infected cells into circulation where it is internalized by bystander cells and is known to regulate inflammatory pathways and elicit a pro-oxidant environment. We have examined the effects of Tat on the anti-oxidant regulatory network driven by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in primary human pulmonary arterial endothelial cells, which are heavily involved in pathogenesis of HIV associated lung diseases including pulmonary arterial hypertension and COPD. Co-expression of Tat and a luciferase reporter construct driven by the Nrf2 activated anti-oxidant response element (ARE) demonstrated markedly reduced Nrf2/ARE activity, even when stimulated by the potent Nrf2 activating compound PB125. Additionally, Heme-oxygenase-1 (HO-1) transcription was potently repressed by Tat in a cell line as well as primary endothelial cells, and treatment with PB125 failed to restore transcriptional activity. Other anti-oxidant Nrf2 genes examined included NADPH Dehydrogenase Quinone 1 (NQO1) and Sulfiredoxin-1 (SRXN1). NQO1 was repressed basally by Tat, while SRXN1 transcription was refractory to activation by PB125 in the presence of Tat. Lastly, we demonstrated that Tat expressing cells have increased indicators of oxidative stress including elevated production of reactive oxygen species, measured by electron paramagnetic resonance spectroscopy, and increased levels of nitrotyrosine content. These observations suggest a novel mechanism by which HIV Tat increases oxidative burden by dysregulation of the Nrf2/ARE pathway.


Assuntos
Antioxidantes/metabolismo , Infecções por HIV/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Células Endoteliais/virologia , HIV/genética , HIV/patogenicidade , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Heme Oxigenase-1/genética , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA