RESUMO
BACKGROUND: The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS: Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS: These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.
Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Vacinas Virais , Humanos , Animais , Vacinas Atenuadas , Macaca fascicularis , Vesiculovirus/genética , Vírus da Estomatite Vesicular Indiana , Anticorpos AntiviraisRESUMO
The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.
Assuntos
Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Vacinas Atenuadas/imunologia , Vesiculovirus/genética , África Ocidental/epidemiologia , Animais , Anticorpos Antivirais/imunologia , República Democrática do Congo/epidemiologia , Vacinas contra Ebola/genética , Ebolavirus/classificação , Feminino , Vetores Genéticos/genética , Doença pelo Vírus Ebola/imunologia , Humanos , Imunoglobulina G/imunologia , Cinética , Macaca fascicularis , Masculino , Análise de Sobrevida , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vesiculovirus/crescimento & desenvolvimentoRESUMO
Previous studies demonstrated that a single intramuscular (i.m.) dose of an attenuated recombinant vesicular stomatitis virus (rVSV) vector (VesiculoVax vector platform; rVSV-N4CT1) expressing the glycoprotein (GP) from the Mayinga strain of Zaire ebolavirus (EBOV) protected nonhuman primates (NHPs) from lethal challenge with EBOV strains Kikwit and Makona. Here, we studied the immunogenicities of an expanded range of attenuated rVSV vectors expressing filovirus GP in mice. Based on data from those studies, an optimal attenuated trivalent rVSV vector formulation was identified that included rVSV vectors expressing EBOV, Sudan ebolavirus (SUDV), and the Angola strain of Marburg marburgvirus (MARV) GPs. NHPs were vaccinated with a single dose of the trivalent formulation, followed by lethal challenge 28 days later with each of the three corresponding filoviruses. At day 14 postvaccination, a serum IgG response specific for all three GPs was detected in all the vaccinated macaques. A modest and balanced cell-mediated immune response specific for each GP was also detected in a majority of the vaccinated macaques. No matter the level of total GP-specific immune response detected postvaccination, all the vaccinated macaques were protected from disease and death following lethal challenge with each of the three filoviruses. These findings indicate that vaccination with a single dose of attenuated rVSV-N4CT1 vectors each expressing a single filovirus GP may provide protection against the filoviruses most commonly responsible for outbreaks of hemorrhagic fever in sub-Saharan Africa.IMPORTANCE The West African Ebola virus Zaire outbreak in 2013 showed that the disease was not only a regional concern, but a worldwide problem, and highlighted the need for a safe and efficacious vaccine to be administered to the populace. However, other endemic pathogens, like Ebola virus Sudan and Marburg, also pose an important health risk to the public and therefore require development of a vaccine prior to the occurrence of an outbreak. The significance of our research was the development of a blended trivalent filovirus vaccine that elicited a balanced immune response when administered as a single dose and provided complete protection against a lethal challenge with all three filovirus pathogens.
Assuntos
Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/metabolismo , Vesiculovirus/genética , Vacinas Virais/administração & dosagem , Animais , Anticorpos Antivirais/metabolismo , Ebolavirus/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Imunoglobulina G/metabolismo , Injeções Intramusculares , Macaca fascicularis , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Camundongos , Vacinação , Vacinas Atenuadas , Vacinas Sintéticas , Vesiculovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologiaRESUMO
A recombinant vesicular stomatitis virus (rVSV) expressing the Marburg virus (MARV) Musoke variant glycoprotein fully protects macaques against 2 MARV variants and Ravn virus as a preventive vaccine and MARV variant Musoke as a postexposure treatment. To evaluate postexposure efficacy against the most pathogenic MARV variant, Angola, we engineered rVSVs expressing homologous Angola glycoprotein. Macaques were challenged with high or low doses of variant Angola and treated 20-30 minutes after exposure. A total of 25% and 60%-75% of treated macaques survived the high-dose and low-dose challenges, respectively. The more rapid disease progression of variant Angola versus variant Musoke may account for the incomplete protection observed.
Assuntos
Vetores Genéticos , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Virais/imunologia , Animais , Feminino , Macaca mulatta , Masculino , Vacinas Sintéticas/imunologiaRESUMO
The demonstrated clinical efficacy of a recombinant vesicular stomatitis virus (rVSV) vaccine vector has stimulated the investigation of additional serologically distinct Vesiculovirus vectors as therapeutic and/or prophylactic vaccine vectors to combat emerging viral diseases. Among these viral threats are the encephalitic alphaviruses Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV), which have demonstrated potential for natural disease outbreaks, yet no licensed vaccines are available in the event of an epidemic. Here we report the rescue of recombinant Isfahan virus (rISFV) from genomic cDNA as a potential new vaccine vector platform. The rISFV genome was modified to attenuate virulence and express the VEEV and EEEV E2/E1 surface glycoproteins as vaccine antigens. A single dose of the rISFV vaccine vectors elicited neutralizing antibody responses and protected mice from lethal VEEV and EEEV challenges at 1 month postvaccination as well as lethal VEEV challenge at 8 months postvaccination. A mixture of rISFV vectors expressing the VEEV and EEEV E2/E1 glycoproteins also provided durable, single-dose protection from lethal VEEV and EEEV challenges, demonstrating the potential for a multivalent vaccine formulation. These findings were paralleled in studies with an attenuated form of rVSV expressing the VEEV E2/E1 glycoproteins. Both the rVSV and rISFV vectors were attenuated by using an approach that has demonstrated safety in human trials of an rVSV/HIV-1 vaccine. Vaccines based on either of these vaccine vector platforms may present a safe and effective approach to prevent alphavirus-induced disease in humans.IMPORTANCE This work introduces rISFV as a novel vaccine vector platform that is serologically distinct and phylogenetically distant from VSV. The rISFV vector has been attenuated by an approach used for an rVSV vector that has demonstrated safety in clinical studies. The vaccine potential of the rISFV vector was investigated in a well-established alphavirus disease model. The findings indicate the feasibility of producing a safe, efficacious, multivalent vaccine against the encephalitic alphaviruses VEEV and EEEV, both of which can cause fatal disease. This work also demonstrates the efficacy of an attenuated rVSV vector that has already demonstrated safety and immunogenicity in multiple HIV-1 phase I clinical studies. The absence of serological cross-reactivity between rVSV and rISFV and their phylogenetic divergence within the Vesiculovirus genus indicate potential for two stand-alone vaccine vector platforms that could be used to target multiple bacterial and/or viral agents in successive immunization campaigns or as heterologous prime-boost agents.
Assuntos
Portadores de Fármacos , Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina/prevenção & controle , Vesiculovirus/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina Venezuelana/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Análise de Sobrevida , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genéticaRESUMO
A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.
Assuntos
Vacinas contra a AIDS/farmacologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Imunidade Celular/efeitos dos fármacos , Vacinas contra a AIDS/imunologia , Animais , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/farmacologia , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Feminino , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Humanos , Imunidade Humoral , Macaca mulatta , Masculino , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologiaRESUMO
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7-9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines.
Assuntos
Ebolavirus/imunologia , Vetores Genéticos/imunologia , Doença pelo Vírus Ebola/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Cobaias , Doença pelo Vírus Ebola/virologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos , Estomatite Vesicular/imunologia , Vesiculovirus/imunologia , Proteínas Virais/imunologiaRESUMO
There are currently no prophylactic vaccines licensed to protect against Lassa fever caused by Lassa virus (LASV) infection. The Emergent BioSolutions (EBS) vaccine candidate, EBS-LASV, is being developed for the prevention of Lassa fever. EBS-LASV is a live-attenuated recombinant Vesicular Stomatitis Virus (rVSV)-vectored vaccine encoding the surface glycoprotein complex (GPC) from LASV and has two attenuating vector modifications: a gene shuffle of the VSV N gene and a deletion of the VSV G gene. Preclinical studies were performed to evaluate EBS-LASV's neurovirulence potential following intracranial (IC) injection and to determine the biodistribution and vector replication following intramuscular (IM) inoculation in mice. In addition, the potential EBS-LASV toxicity was assessed using repeated-dose IM EBS-LASV administration to rabbits. All mice receiving the IC injection of EBS-LASV survived, while mice administered the unattenuated control vector did not. The vaccine was only detected in the muscle at the injection site, draining lymph nodes, and the spleen over the first week following IM EBS-LASV injection in mice, with no detectable plasma viremia. No toxicity was observed in rabbits receiving a three-dose regimen of EBS-LASV. These studies demonstrate that EBS-LASV is safe when administered to animals and supported a first-in-human dose-escalation, safety, and immunogenicity clinical study.
RESUMO
BACKGROUND: Marburg virus (MARV), an Ebola-like virus, remains an eminent threat to public health as demonstrated by its high associated mortality rate (23-90%) and recent emergence in West Africa for the first time. Although a recombinant vesicular stomatitis virus (rVSV)-based vaccine (Ervebo) is licensed for Ebola virus disease (EVD), no approved countermeasures exist against MARV. Results from clinical trials indicate Ervebo prevents EVD in 97.5-100% of vaccinees 10 days onwards post-immunization. METHODOLOGY/FINDINGS: Given the rapid immunogenicity of the Ervebo platform against EVD, we tested whether a similar, but highly attenuated, rVSV-based Vesiculovax vector expressing the glycoprotein (GP) of MARV (rVSV-N4CT1-MARV-GP) could provide swift protection against Marburg virus disease (MVD). Here, groups of cynomolgus monkeys were vaccinated 7, 5, or 3 days before exposure to a lethal dose of MARV (Angola variant). All subjects (100%) immunized one week prior to challenge survived; 80% and 20% of subjects survived when vaccinated 5- and 3-days pre-exposure, respectively. Lethality was associated with higher viral load and sustained innate immunity transcriptional signatures, whereas survival correlated with development of MARV GP-specific antibodies and early expression of predicted NK cell-, B-cell-, and cytotoxic T-cell-type quantities. CONCLUSIONS/SIGNIFICANCE: These results emphasize the utility of Vesiculovax vaccines for MVD outbreak management. The highly attenuated nature of rVSV-N4CT1 vaccines, which are clinically safe in humans, may be preferable to vaccines based on the same platform as Ervebo (rVSV "delta G" platform), which in some trial participants induced vaccine-related adverse events in association with viral replication including arthralgia/arthritis, dermatitis, and cutaneous vasculitis.
Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Animais , Anticorpos Antivirais , Glicoproteínas , Humanos , Macaca fascicularis , Doença do Vírus de Marburg/prevenção & controle , Vacinas Atenuadas , Vesiculovirus/genéticaRESUMO
Auro Vaccines LLC has developed a protein vaccine to prevent disease from Nipah and Hendra virus infection that employs a recombinant soluble Hendra glycoprotein (HeV-sG) adjuvanted with aluminum phosphate. This vaccine is currently under clinical evaluation in a Phase 1 study. The Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template may also help contribute to improved public acceptance and communication of licensed protein vaccines.
Assuntos
Vírus Hendra , Infecções por Henipavirus , Glicoproteínas , Infecções por Henipavirus/prevenção & controle , Humanos , Medição de Risco , Vacinas SintéticasRESUMO
Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
Assuntos
Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/virologia , Marburgvirus/imunologia , Profilaxia Pós-Exposição , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Citocinas/sangue , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Regulação para Baixo/genética , Feminino , Inflamação/sangue , Inflamação/imunologia , Interferons/genética , Interferons/metabolismo , Células Matadoras Naturais/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Doença do Vírus de Marburg/sangue , Doença do Vírus de Marburg/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Células Th2/imunologia , Transcriptoma/genética , Regulação para Cima/genética , Vesiculovirus/genética , Carga Viral/imunologiaRESUMO
Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of VesiculoVax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and that also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the 3 corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all 4 glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the level of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.
Assuntos
Anticorpos Antivirais/imunologia , Vetores Genéticos , Imunoglobulina G/imunologia , Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Vesiculovirus , Vacinas Virais/imunologia , Animais , Humanos , Febre Lassa/genética , Febre Lassa/imunologia , Vírus Lassa/genética , Macaca fascicularis , Vacinas Virais/genéticaRESUMO
BACKGROUND: The safety and immunogenicity of a highly attenuated recombinant vesicular stomatitis virus (rVSV) expressing HIV-1 gag (rVSVN4CT1-HIV-1gag1) was shown in previous phase 1 clinical studies. An rVSV vector expressing Ebola virus glycoprotein (EBOV-GP) in place of HIV-1 gag (rVSVN4CT1-EBOVGP1) showed single-dose protection from lethal challenge with low passage Ebola virus in non-human primates. We aimed to evaluate the safety and immunogenicity of the rVSVN4CT1-EBOVGP1 vaccine in healthy adults. METHODS: We did a randomised double-blind, placebo-controlled, phase 1 dose-escalation study at a single clinical site (Optimal Research) in Melbourne, FL, USA. Eligible participants were healthy men and non-pregnant women aged 18-60 years, with a body-mass index (BMI) of less than 40 kg/m2, no history of filovirus infection, VSV infection, or receipt of rVSV in previous studies, and who had not visited regions where Ebola virus outbreaks have occurred. Three cohorts were enrolled to assess a low (2·5â×â104 plaque forming units [PFU]), intermediate (2â×â105 PFU), or high dose (1·8â×â106 PFU) of the vaccine. Participants within each cohort were randomly allocated (10:3) to receive vaccine or placebo by intramuscular injection in a homologous prime and boost regimen, with 4 weeks between doses. All syringes were masked with syringe sleeves; participants and study site staff were not blinded to dose level but were blinded to active vaccine and placebo. The primary outcomes were safety and tolerability; immunogenicity, assessed as GP-specific humoral immune response (at 2 weeks after each dose) and cellular immune response (at 1 and 2 weeks after each dose), was a secondary outcome. All randomised participants were included in primary and safety analyses. This trial is registered with ClinicalTrials.gov, NCT02718469. FINDINGS: Between Dec 22, 2015, and Sept 15, 2016, 39 individuals (18 [46%] men and 21 [54%] women, mean age 51 years [SD 10]) were enrolled, with ten participants receiving the vaccine and three participants receiving placebo in each of three cohorts. One participant in the intermediate dose cohort was withdrawn from the study because of a diagnosis of invasive ductal breast carcinoma 24 days after the first vaccination, which was considered unrelated to the vaccine. No severe adverse events were observed. Solicited local adverse events occurred in ten (26%) of 39 participants after the first dose and nine (24%) of 38 participants after the second dose; the events lasted 3 days or less, were predominantly injection site tenderness (17 events) and injection site pain (ten events), and were either mild (19 events) or moderate (ten events) in intensity. Systemic adverse events occurred in 13 (33%) of 39 participants after the first dose and eight (21%) of 38 participants after the second dose; the events were mild (45 events) or moderate (11 events) in severity, and the most common events were malaise or fatigue (13 events) and headache (12 events). Arthritis and maculopapular, vesicular, or purpuric rash distal to the vaccination site(s) were not reported. A GP-specific IgG response was detected in all vaccine recipients after two doses (and IgG response frequency was 100% after a single high dose), and an Ebola virus neutralising response was detected in 100% of participants in the high-dose cohort. INTERPRETATION: The rVSVN4CT1-EBOVGP1 vaccine was well tolerated at all dose levels tested and was immunogenic despite a high degree of attenuation. The combined safety and immunogenicity profile of the rVSVN4CT1-EBOVGP1 vaccine vector support phase 1-2 clinical evaluation. FUNDING: US Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense: Joint Project Manager for Chemical, Biological, Radiological and Nuclear Medical.
Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Segurança , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Vacinação , Vacinas Atenuadas/imunologiaRESUMO
Immunotherapy for HPVPOS malignancies is attractive because well-defined, viral, non-self tumor antigens exist as targets. Several approaches to vaccinate therapeutically against HPV E6 and E7 antigens have been adopted, including viral platforms such as VSV. A major advantage of VSV expressing these antigens is that VSV also acts as an oncolytic virus, leading to direct tumor cell killing and induction of effective anti-E6 and anti-E7 T cell responses. We have also shown that addition of immune adjuvant genes, such as IFNß, further enhances safety and/or efficacy of VSV-based oncolytic immunovirotherapies. However, multiple designs of the viral vector are possible-with respect to levels of immunogen expression and method of virus attenuation-and optimal designs have not previously been tested head-to-head. Here, we tested three different VSV engineered to express a non-oncogenic HPV16 E7/6 fusion protein for their immunotherapeutic and oncolytic properties. We assessed their profiles of efficacy and toxicity against HPVPOS and HPVNEG murine tumor models and determined the optimal route of administration. Our data show that VSV is an excellent platform for the oncolytic immunovirotherapy of tumors expressing HPV target antigens, combining a balance of efficacy and safety suitable for evaluation in a first-in-human clinical trial.
RESUMO
BACKGROUND: The addition of plasmid cytokine adjuvants, electroporation, and live attenuated viral vectors may further optimize immune responses to DNA vaccines in heterologous prime-boost combinations. The objective of this study was to test the safety and tolerability of a novel prime-boost vaccine regimen incorporating these strategies with different doses of IL-12 plasmid DNA adjuvant. METHODS: In a phase 1 study, 88 participants received an HIV-1 multiantigen (gag/pol, env, nef/tat/vif) DNA vaccine (HIV-MAG, 3000 µg) co-administered with IL-12 plasmid DNA adjuvant at 0, 250, 1000, or 1500 µg (N = 22/group) given intramuscularly with electroporation (Ichor TriGrid™ Delivery System device) at 0, 1 and 3 months; followed by attenuated recombinant vesicular stomatitis virus, serotype Indiana, expressing HIV-1 Gag (VSV-Gag), 3.4 â 107 plaque-forming units (PFU), at 6 months; 12 others received placebo. Injections were in both deltoids at each timepoint. Participants were monitored for safety and tolerability for 15 months. RESULTS: The dose of IL-12 pDNA did not increase pain scores, reactogenicity, or adverse events with the co-administered DNA vaccine, or following the VSV-Gag boost. Injection site pain and reactogenicity were common with intramuscular injections with electroporation, but acceptable to most participants. VSV-Gag vaccine often caused systemic reactogenicity symptoms, including a viral syndrome (in 41%) of fever, chills, malaise/fatigue, myalgia, and headache; and decreased lymphocyte counts 1 day after vaccination. CONCLUSIONS: HIV-MAG DNA vaccine given by intramuscular injection with electroporation was safe at all doses of IL-12 pDNA. The VSV-Gag vaccine at this dose was associated with fever and viral symptoms in some participants, but the vaccine regimens were safe and generally well-tolerated. TRIAL REGISTRATION: Clinical Trials.gov NCT01578889.
Assuntos
Vacinas contra a AIDS/administração & dosagem , Vetores Genéticos/administração & dosagem , Interleucina-12/genética , Vacinas Atenuadas/administração & dosagem , Vacinas de DNA/administração & dosagem , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/efeitos adversos , Adulto , Terapia Combinada , Método Duplo-Cego , Eletroporação , Feminino , Vetores Genéticos/efeitos adversos , HIV-1 , Voluntários Saudáveis , Humanos , Imunização Secundária , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Vacinas Atenuadas/efeitos adversos , Vacinas de DNA/efeitos adversos , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência HumanaRESUMO
Efficient expression vectors for interleukin 15 (IL-15) were developed combining RNA/codon optimization and modification of the IL-15 native long signal peptide. These changes resulted in elevated cytoplasmic levels of the optimized mRNA and more than 100-fold improved production of secreted human IL-15 protein. Similar modifications have also led to greatly increased rhesus macaque and murine IL-15 production. Comparison of different heterologous secretory signals showed that the tissue plasminogen activator signal is most efficient for the production of extracellular IL-15. Upon intramuscular injection of the fully optimized expression vectors in mice, IL-15 was readily detected in the serum. Serum levels represented <1% of intramuscular IL-15 and were sufficient in causing some systemic effects, such as increasing the frequency of natural killer (NK) cells in the liver. Upon hydrodynamic DNA delivery in mice, very high levels of IL-15 were produced, which increased the frequency of NK cells in liver as well as in spleen and lung. These optimized expression vectors have potential applications in vaccine and immunotherapy approaches against AIDS and cancer.
Assuntos
Interleucina-15/biossíntese , Interleucina-15/genética , Sequência de Aminoácidos , Animais , Feminino , Expressão Gênica , Vetores Genéticos , Humanos , Interleucina-15/sangue , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Músculos/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Sinais Direcionadores de Proteínas/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Homologia de Sequência de AminoácidosRESUMO
Vaccination is a proven intervention against human viral diseases; however, success against Herpes Simplex Virus 2 (HSV-2) remains elusive. Most HSV-2 vaccines tested in humans to date contained just one or two immunogens, such as the virion attachment receptor glycoprotein D (gD) and/or the envelope fusion protein, glycoprotein B (gB). At least three factors may have contributed to the failures of subunit-based HSV-2 vaccines. First, immune responses directed against one or two viral antigens may lack sufficient antigenic breadth for efficacy. Second, the antibody responses elicited by these vaccines may have lacked necessary Fc-mediated effector functions. Third, these subunit vaccines may not have generated necessary protective cellular immune responses. We hypothesized that a polyvalent combination of HSV-2 antigens expressed from a DNA vaccine with an adjuvant that polarizes immune responses toward a T helper 1 (Th1) phenotype would compose a more effective vaccine. We demonstrate that delivery of DNA expressing full-length HSV-2 glycoprotein immunogens by electroporation with the adjuvant interleukin 12 (IL-12) generates substantially greater protection against a high-dose HSV-2 vaginal challenge than a recombinant gD subunit vaccine adjuvanted with alum and monophosphoryl lipid A (MPL). Our results further show that DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and provide similar survival benefits and disease symptom reductions compared with a potent live attenuated HSV-2 0ΔNLS vaccine, but that mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. Together, our data indicate that adjuvanted multivalent DNA vaccines hold promise for an effective HSV-2 vaccine, but that further improvements may be required.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Interleucina-12/administração & dosagem , Vacinas de DNA/imunologia , Animais , Modelos Animais de Doenças , Glicoproteínas/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Proteínas de Membrana/imunologia , Camundongos , Análise de Sobrevida , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
Despite substantial clinical benefits, complete eradication of HIV has not been possible using antiretroviral therapy (ART) alone. Strategies that can either eliminate persistent viral reservoirs or boost host immunity to prevent rebound of virus from these reservoirs after discontinuation of ART are needed; one possibility is therapeutic vaccination. We report the results of a randomized, placebo-controlled trial of a therapeutic vaccine regimen in patients in whom ART was initiated during the early stage of HIV infection and whose immune system was anticipated to be relatively intact. The objectives of our study were to determine whether the vaccine was safe and could induce an immune response that would maintain suppression of plasma viremia after discontinuation of ART. Vaccinations were well tolerated with no serious adverse events but produced only modest augmentation of existing HIV-specific CD4+ T cell responses, with little augmentation of CD8+ T cell responses. Compared with placebo, the vaccination regimen had no significant effect on the kinetics or magnitude of viral rebound after interruption of ART and no impact on the size of the HIV reservoir in the CD4+ T cell compartment. Notably, 26% of subjects in the placebo arm exhibited sustained suppression of viremia (<400 copies/ml) after treatment interruption, a rate of spontaneous suppression higher than previously reported. Our findings regarding the degree and kinetics of plasma viral rebound after ART interruption have potentially important implications for the design of future trials testing interventions aimed at achieving ART-free control of HIV infection.
Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/imunologiaRESUMO
The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 gag/pol or ProfectusVax nef/tat/vif, env) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 µg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 107 PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8+ T-cell responses postboost compared to no pIL-12 (P = 0.02), while CD4+ T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (P ≤ 0.05). The VSV boost increased Gag-specific CD4+ and CD8+ T-cell responses in all groups (P < 0.001 for CD4+ T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8+ T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8+ T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8+ T-cell responses but decreased the CD4+ responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.).
Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina , Interleucina-12/imunologia , Vacinas de DNA/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos , Adulto , Mapeamento de Epitopos , Feminino , Vetores Genéticos , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Imunização Secundária , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Plasmídeos , Vacinação , Vacinas de DNA/administração & dosagem , Vírus da Estomatite Vesicular Indiana/imunologia , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Of the various approaches being developed as prophylactic HIV vaccines, those based on a heterologous plasmid DNA prime, live vector boost vaccination regimen appear especially promising in the nonhuman primate/simian-human immunodeficiency virus (SHIV) challenge model. In this study, we sought to determine whether a series of intramuscular priming immunizations with a plasmid DNA vaccine expressing SIVgag p39, in combination with plasmid expressed rhesus IL-12, could effectively enhance the immunogenicity and postchallenge efficacy of two intranasal doses of recombinant vesicular stomatitis virus (rVSV)-based vectors expressing HIV-1 env 89.6P gp160 and SIVmac239 gag p55 in rhesus macaques. In macaques receiving the combination plasmid DNA prime, rVSV boost vaccination regimen we observed significantly increased SIVgag- specific cell-mediated and humoral immune responses and significantly lower viral loads postintravenous SHIV89.6P challenge relative to macaques receiving only the rVSV vectored immunizations. In addition, the plasmid DNA prime, rVSV boost vaccination regimen also tended to increase the preservation of peripheral blood CD4+ cells and reduce the morbidity and mortality associated with SHIV89.6P infection. An analysis of immune correlates of protection after SHIV89.6P challenge revealed that the prechallenge SHIV-specific IFN-gamma ELISpot response elicited by vaccination and the ability of the host to mount a virus-specific neutralizing antibody response postchallenge correlated with postchallenge clinical outcome. The correlation between vaccine-elicited cell-mediated immune responses and an improved clinical outcome after SHIV challenge provides strong justification for the continued development of a cytokine-enhanced plasmid DNA prime, rVSV vector boost immunization regimen for the prevention of HIV infection.