RESUMO
The application of aptamers in biomedicine is emerging as an essential technology in the field of cancer research. As small single-stranded DNA or RNA ligands with high specificity and low immunogenicity for their targets, aptamers provide many advantages in cancer therapeutics over protein-based molecules, such as antibodies. Vimentin is an intermediate filament protein that is overexpressed in endothelial cells of cancerous tissue. High expression levels of vimentin have been associated with increased capacity for migration and invasion of the tumor cells. We have selected and identified thioated aptamers with high specificity for vimentin using human ovarian cancer tissues. Tentative binding motifs were chosen for two vimentin aptamers based on predicted secondary structures. Each of these shorter, tentative binding motifs was synthesized, purified, and characterized via cell binding assays. Two vimentin binding motifs with high fidelity binding were selected and further characterized via cell and tissue binding assays, as well as flow cytometric analysis. The equilibrium binding constants of these small thioated aptamer constructs were also determined. Future applications for the vimentin binding aptamer motifs include conjugation of the aptamers to synthetic dyes for use in targeted imaging and therapy, and ultimately more detailed and precise monitoring of treatment response and tumor progression in ovarian pathology.
Assuntos
Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Motivos de Nucleotídeos , Vimentina/genética , Aptâmeros de Nucleotídeos/química , Sítios de Ligação , Biomarcadores Tumorais , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Cinética , Conformação de Ácido Nucleico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Ligação Proteica , Técnica de Seleção de Aptâmeros/métodos , Vimentina/química , Vimentina/metabolismoRESUMO
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
Assuntos
Aptâmeros de Nucleotídeos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnica de Seleção de Aptâmeros/métodos , Análise de Sequência de DNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Distribuição Aleatória , Técnica de Seleção de Aptâmeros/tendências , Análise de Sequência de DNA/tendências , Software/tendênciasRESUMO
By combining pseudorandom bead-based aptamer libraries with conjugation chemistry, we have created next-generation aptamers, X-aptamers (XAs). Several X-ligands can be added in a directed or random fashion to the aptamers to further enhance their binding affinities for the target proteins. Here we describe the addition of a drug (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), demonstrated to bind to CD44-HABD, to a complete monothioate backbone-substituted aptamer to increase its binding affinity for the target protein by up to 23-fold, while increasing the drug's level of binding 1-million fold.
Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Receptores de Hialuronatos/química , Ligantes , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Ligação ProteicaRESUMO
800 MHz NMR structure of the 28-residue peptide thymosin alpha-1 in 40% TFE/60% water (v/v) has been determined. Restrained molecular dynamic simulations with an explicit solvent box containing 40% TFE/60% TIP3P water (v/v) were used, in order to get the 3D model of the NMR structure. We found that the peptide adopts a structured conformation having two stable regions: an alpha-helix region from residues 14 to 26 and two double ß-turns in the N-terminal twelve residues which form a distorted helical structure.
Assuntos
Timosina/análogos & derivados , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Timalfasina , Timosina/químicaRESUMO
Familial adenomatous polyposis (FAP) is an autosomal-dominant condition characterized by the presence of multiple colorectal adenomas, caused by germline variants in the adenomatous polyposis coli (APC) gene. More than 300 germline variants have been characterized. The detection of novel variants is important to understand the mechanisms of pathophysiology. We identified a novel pathogenic germline variant using next-generation sequencing (NGS) in a proband patient. The variant is a complex rearrangement (c.422+1123_532-577 del ins 423-1933_423-1687 inv) that generates a complete deletion of exon 5 of the APC gene. To study the variant in other family members, we designed an endpoint PCR method followed by Sanger sequencing. The variant was identified in the proband patient's mother, one daughter, her brother, two cousins, a niece, and a second nephew. In patients where the variant was identified, we found atypical clinical symptoms, including mandibular, ovarian, breast, pancreatic, and gastric cancer. Genetic counseling and cancer prevention strategies were provided for the family. According to the American College of Medical Genetics (ACMG) guidelines, this novel variant is considered a PVS1 variant (very strong evidence of pathogenicity), and it can be useful in association with clinical data for early surveillance and suitable treatment.
RESUMO
Prostate-specific antigen (PSA) is a serine protease produced by epithelial prostatic cells and its main function is to liquefy seminal coagulum. Currently, PSA is a biomarker for the diagnosis and screening of prostate cancer and it was the first cancer biomarker approved by the FDA. The quantity and serum isoforms of male PSA, allows distinguishing between carcinoma and benign inflammatory disease of the prostate. Initially, it was thought that PSA was produced only by the prostate, and thus, a protein that was expressed exclusively in men. However, several authors report that PSA is a protein that is expressed by multiple non-prostatic tissues not only in men but also in women. Some authors also report that in women, the expression of this protein is highly related to breast and colon cancer and therefore can act as a possible biomarker for early detection, diagnosis and prognosis of these cancers in women. In this review, we will focus on the characteristics of the PSA at a molecular level, its current clinical implications, the expression of this protein in non-prostatic tissues, and its relationship with cancer, especially in women.
Assuntos
Programas de Rastreamento/métodos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/diagnóstico , Feminino , Humanos , Masculino , Neoplasias da Próstata/patologiaRESUMO
The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3'-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1-G10, A13-G22, A1-A13 platinum chelates at the top of the quadruplex and A7-A19, G4-A19 and A7-G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase.
Assuntos
Adenina/química , Guanina/química , Platina/química , Potássio/química , Sódio/química , Telômero/genética , Sequência de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Potássio/farmacologia , Sequências Repetitivas de Ácido Nucleico/efeitos dos fármacos , Sequências Repetitivas de Ácido Nucleico/genética , Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Telômero/químicaRESUMO
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5´dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes.
Assuntos
Aptâmeros de Nucleotídeos/análise , Biomarcadores Tumorais/análise , Neoplasias Ovarianas/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Microdissecção e Captura a Laser , Espectrometria de MassasRESUMO
Thymosin proteins, originally isolated from fractionation of thymus tissue, represent a class of compounds that we now know are present in numerous other tissues, are unrelated to each other in a genetic sense, and appear to have different functions within the cell. Thymosin α1 (generic drug name thymalfasin; trade name Zadaxin) is derived from a precursor molecule, prothymosin, by proteolytic cleavage, and stimulates the immune system. Although the peptide is natively unstructured in aqueous solution, the helical structure has been observed in the presence of trifluoroethanol or unilamellar vesicles, and these studies are consistent with the presence of a dynamic helical structure whose sides are not completely hydrophilic or hydrophobic. This helical structure may occur in circulation when the peptide comes into contact with membranes. In this report, we discuss the current knowledge of the thymosin α1 structure and similar properties of thymosin ß4 and thymosin ß9, in different environments.
Assuntos
Espectroscopia de Ressonância Magnética/métodos , Timosina/análogos & derivados , Timosina/química , Animais , Humanos , TimalfasinaRESUMO
The bulky, asymmetric analog of the antitumor drug cisplatin, [PtCl(2)(tmen)] (tmen = N,N,N'-trimethylethylenediamine), was used to produce crosslinks with the dinucleotide d(GpG), modeling the most frequent lesions that cisplatin and its analogs cause to DNA. The ligand tmen was chosen because it is expected to constrain the guanine cis to the NMe(2) group in the adduct [Pt(tmen){d(GpG)}](+) to an orientation perpendicular to the coordination plane and to stabilize the other guanine in an oblique orientation, thus maintaining a head-to-head geometry typical of cisplatin-d(GpG) crosslinks within single- and double-stranded DNA. Of the four possible combinations of tmen chirality (R or S symmetry of the coordinated NHMe group) and crosslink direction (5'-G bound cis to the secondary or the tertiary amino group of tmen), two isomers were preponderantly formed, [Pt(R-tmen){d(GpG)}](+) with 5'-G bound cis to NMe(2) and [Pt(S-tmen){d(GpG)}](+) with 5'-G bound cis to NHMe. The former was shown to have a right-handed R2 orientation of guanines similar to that found in duplex DNA, whereas the latter had a left-handed L1 orientation that modeled cisplatin-d(GpG) adducts within single-stranded DNA. The R2 rotamer was found to be in an equilibrium (as observed using EXSY spectroscopy) with a minor fraction (< or =4%) of a Delta-HT rotamer related to R2 by rotation of the 3'-G about the Pt-N7 bond. The major rotamers R2 and L1 were isolated using reverse-phase HPLC, and their NMR and CD signatures were compared to those of the corresponding rotamers of the less hindered adduct [Pt(dmen)(GpG)](+) (dmen = N,N-dimethylethylenediamine). From this and other comparisons with previously reported platinum dinucleotide complexes, and from molecular modeling, it could be concluded that both steric repulsion between guanine and substituents of the cis amino group and N-H...O6 hydrogen bonding are significant effects favoring the oblique orientation of one guanine base typical of the HH rotamers of [Pt(diamine){d(GpG)}](+) and [Pt(diamine)(GpG)](+) complexes.
Assuntos
Cisplatino/química , DNA/química , Fosfatos de Dinucleosídeos/química , Dicroísmo Circular , Reagentes de Ligações Cruzadas/química , Adutos de DNA/química , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , TemperaturaRESUMO
The cytotoxic, pyrazolato-bridged dinuclear platinum(II) complex [(cis-{Pt(NH3)2})2(mu-OH)(mu-pz)]2+ (pz=pyrazolate) has been found to cross-link two adjacent guanines of a double-stranded DNA decamer without destabilizing the duplex and without changing the directionality of the helix axis. A 1H NMR study of the oligonucleotide d(CTCTG*G*TCTC)-d(GAGACCAGAG), cross-linked at the two G* guanines by [(cis-{Pt(NH3)2})2(mu-pz)]3+, and molecular dynamics simulations of the explicitly solvated duplex were performed to characterize the structural details of the adduct. The dinuclear platinum cross-link unwinds the helix by approximately 15 degrees , that is, to a similar extent as the widely used antitumor drug cisplatin, but, in contrast to the latter, induces no significant bend in the helix axis. The Watson-Crick base-pairing remains intact, and the melting temperature of the duplex is unaffected by the cross-link. The helical twist is considerably reduced between the two platinated bases, as becomes manifest in an unusually short sequential H1'-H1' distance. This unwinding also affects the sugar ring of the guanosine in the 3'-position to the cross-link, which presents an N<-->S equilibrium. This is the first cytotoxic platinum complex that has been successfully designed by envisioning the structural consequences of its binding to DNA.
Assuntos
DNA/química , DNA/metabolismo , Compostos de Platina/química , Compostos de Platina/metabolismo , Pirazóis/química , Pareamento de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Fosfatos de Dinucleosídeos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes , Oligonucleotídeos/química , Oligonucleotídeos/metabolismoRESUMO
The folding of AG(3)(T(2)AG(3))(3) was investigated in the presence of Na(+) or K(+) ions, by using the dinuclear platinum complexes [{trans-PtCl(NH(3))(2)}(2)H(2)N(CH(2))(n)NH(2)]Cl(2) (n = 2 or 6). AG(3)(T(2)AG(3))(3) has been previously found to adopt two different quadruplex structures: the antiparallel one in a solution containing Na(+) and the parallel one in a K(+)-containing crystal. The two structures are strikingly distinct and are not expected to form the same platinum cross-links. Therefore, characterization of the cross-links formed with platinum complexes in solution allowed the predominant conformation(s) to be identified. The bases coordinating the platinum atoms were identified by chemical and 3'-exonuclease digestions. The observed cross-links showed that the parallel structure exists in solution whatever the cation and confirmed the existence of the antiparallel structure in the presence of both cations as previously reported from cross-linking experiments of AG(3)(T(2)AG(3))(3) by mononuclear platinum complexes. Furthermore, the major platinum cross-links were unexpectedly formed between two guanines belonging to the same G-quartet. Their formation was rationalized using molecular dynamics simulations in implicit solvent of the two quadruplex structures. It was shown that they were flexible, allowing some guanines to leave reversibly the top G-quartet and thus rendering their N(7) atom accessible to platinum complexes. Our results also suggest that the human telomere sequence could be a target for such platinum complexes.
Assuntos
Reagentes de Ligações Cruzadas/química , DNA/química , Compostos Organoplatínicos/química , Telômero/química , Termodinâmica , Sítios de Ligação , Cátions Monovalentes , Simulação por Computador , Reagentes de Ligações Cruzadas/metabolismo , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Quadruplex G , Guanina/química , Humanos , Modelos Moleculares , Compostos Organoplatínicos/metabolismo , Potássio , Sódio , Soluções , Solventes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ésteres do Ácido Sulfúrico/química , Telômero/metabolismoRESUMO
Several proteins that specifically bind to DNA modified by cisplatin, including those containing HMG-domains, mediate antitumor activity of this drug. Oligodeoxyribonucleotide duplexes containing a single, site-specific interstrand cross-link of cisplatin were probed for recognition by the rat chromosomal protein HMGB1 and its domains A and B using the electrophoretic mobility-shift assay. It has been found that the full-length HMGB1 protein and its domain B to which the lysine-rich region (seven amino acid residues) of the A/B linker is attached at the N-terminus (the domain HMGB1b7) specifically recognize DNA interstrand cross-linked by cisplatin. The affinity of these proteins to the interstrand cross-link of cisplatin is not very different from that to the major 1,2-GG intrastrand cross-link of this drug. In contrast, no recognition of the interstrand cross-link by the domain B lacking this region or by the domain A with or without this lysine-rich region attached to its C-terminus is noticed under conditions when these proteins readily bind to 1,2-GG intrastrand adduct. A structural model for the complex formed between the interstrand cross-linked DNA and the domain HMGB1b7 was constructed and refined using molecular mechanics and molecular dynamics techniques. The calculated accessible areas around the deoxyribose protons correlate well with the experimental hydroxyl radical footprint. The model suggests that the only major adaptation necessary for obtaining excellent surface complementarity is extra DNA unwinding (approximately 40 degrees ) at the site of the cross-link. The model structure is consistent with the hypothesis that the enhancement of binding affinity afforded by the basic lysine-rich A/B linker is a consequence of its tight binding to the sugar-phosphate backbone of both DNA strands.