Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Struct Dyn ; 11(3): 034701, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774441

RESUMO

Studying protein dynamics and conformational heterogeneity is crucial for understanding biomolecular systems and treating disease. Despite the deposition of over 215 000 macromolecular structures in the Protein Data Bank and the advent of AI-based structure prediction tools such as AlphaFold2, RoseTTAFold, and ESMFold, static representations are typically produced, which fail to fully capture macromolecular motion. Here, we discuss the importance of integrating experimental structures with computational clustering to explore the conformational landscapes that manifest protein function. We describe the method developed by the Protein Data Bank in Europe - Knowledge Base to identify distinct conformational states, demonstrate the resource's primary use cases, through examples, and discuss the need for further efforts to annotate protein conformations with functional information. Such initiatives will be crucial in unlocking the potential of protein dynamics data, expediting drug discovery research, and deepening our understanding of macromolecular mechanisms.

2.
Sci Data ; 10(1): 853, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040737

RESUMO

Macromolecular complexes are essential functional units in nearly all cellular processes, and their atomic-level understanding is critical for elucidating and modulating molecular mechanisms. The Protein Data Bank (PDB) serves as the global repository for experimentally determined structures of macromolecules. Structural data in the PDB offer valuable insights into the dynamics, conformation, and functional states of biological assemblies. However, the current annotation practices lack standardised naming conventions for assemblies in the PDB, complicating the identification of instances representing the same assembly. In this study, we introduce a method leveraging resources external to PDB, such as the Complex Portal, UniProt and Gene Ontology, to describe assemblies and contextualise them within their biological settings accurately. Employing the proposed approach, we assigned standard names to over 90% of unique assemblies in the PDB and provided persistent identifiers for each assembly. This standardisation of assembly data enhances the PDB, facilitating a deeper understanding of macromolecular complexes. Furthermore, the data standardisation improves the PDB's FAIR attributes, fostering more effective basic and translational research and scientific education.


Assuntos
Pesquisa Translacional Biomédica , Conformação Molecular , Bases de Dados de Proteínas , Substâncias Macromoleculares , Conformação Proteica
3.
Function (Oxf) ; 3(3): zqac013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462614

RESUMO

The auxiliary α2δ subunits of voltage-gated calcium (CaV) channels are key to augmenting expression and function of CaV1 and CaV2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The α2δ proteins are translated as preproteins encoding both α2 and δ, and post-translationally proteolyzed into α2 and δ subunits, which remain associated as a complex. In this study, we have identified ADAM17 as a key protease involved in proteolytic processing of pro-α2δ-1 and α2δ-3 subunits. We provide three lines of evidence: First, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Second, proteolytic cleavage of both α2δ-1 and α2δ-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Third, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature α2δ is essential for the enhancement of CaV function, and in agreement, knockout of ADAM17 inhibited the ability of α2δ-1 to enhance both CaV2.2 and CaV1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of α2δ-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of α2δ-1 and α2δ-3, and thus a potential drug target in neuropathic pain.


Assuntos
Neuralgia , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Canais de Cálcio Tipo N/genética , Proteólise , Cálcio da Dieta/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína ADAM17/genética
4.
Cell Rep ; 29(1): 22-33.e5, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577951

RESUMO

Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by ß subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution.


Assuntos
Sítios de Ligação/fisiologia , Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Neuritos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA