Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 14 Suppl 7: S11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23815231

RESUMO

BACKGROUND: The advent of massively parallel sequencing technologies (Next Generation Sequencing, NGS) profoundly modified the landscape of human genetics.In particular, Whole Exome Sequencing (WES) is the NGS branch that focuses on the exonic regions of the eukaryotic genomes; exomes are ideal to help us understanding high-penetrance allelic variation and its relationship to phenotype. A complete WES analysis involves several steps which need to be suitably designed and arranged into an efficient pipeline.Managing a NGS analysis pipeline and its huge amount of produced data requires non trivial IT skills and computational power. RESULTS: Our web resource WEP (Whole-Exome sequencing Pipeline web tool) performs a complete WES pipeline and provides easy access through interface to intermediate and final results. The WEP pipeline is composed of several steps:1) verification of input integrity and quality checks, read trimming and filtering; 2) gapped alignment; 3) BAM conversion, sorting and indexing; 4) duplicates removal; 5) alignment optimization around insertion/deletion (indel) positions; 6) recalibration of quality scores; 7) single nucleotide and deletion/insertion polymorphism (SNP and DIP) variant calling; 8) variant annotation; 9) result storage into custom databases to allow cross-linking and intersections, statistics and much more. In order to overcome the challenge of managing large amount of data and maximize the biological information extracted from them, our tool restricts the number of final results filtering data by customizable thresholds, facilitating the identification of functionally significant variants. Default threshold values are also provided at the analysis computation completion, tuned with the most common literature work published in recent years. CONCLUSIONS: Through our tool a user can perform the whole analysis without knowing the underlying hardware and software architecture, dealing with both paired and single end data. The interface provides an easy and intuitive access for data submission and a user-friendly web interface for annotated variant visualization.Non-IT mastered users can access through WEP to the most updated and tested WES algorithms, tuned to maximize the quality of called variants while minimizing artifacts and false positives.The web tool is available at the following web address: http://www.caspur.it/wep.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Software , Algoritmos , Humanos , Mutação INDEL , Internet , Polimorfismo de Nucleotídeo Único , Interface Usuário-Computador
2.
J Steroid Biochem Mol Biol ; 143: 348-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24726990

RESUMO

There is growing evidence that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) plays a role in breast cancer prevention and survival. It elicits a variety of antitumor activities like controlling cellular differentiation, proliferation and angiogenesis. Most of its biological effects are exerted via its nuclear receptor which acts as a transcriptional regulator. Here, we carried out a genome-wide investigation of the primary transcriptional targets of 1α,25(OH)2D3 in breast epithelial cancer cells using RNA-Seq technology. We identified early transcriptional targets of 1α,25(OH)2D3 involved in adhesion, growth regulation, angiogenesis, actin cytoskeleton regulation, hexose transport, inflammation and immunomodulation, apoptosis, endocytosis and signaling. Furthermore, we found several transcription factors to be regulated by 1α,25(OH)2D3 that subsequently amplify and diversify the transcriptional output driven by 1α,25(OH)2D3 leading finally to a growth arrest of the cells. Moreover, we could show that 1α,25(OH)2D3 elevates the trimethylation of histone H3 lysine 4 at several target gene promoters. Our present transcriptomic analysis of differential expression after 1α,25(OH)2D3 treatment provides a resource of primary 1α,25(OH)2D3 targets that might drive the antiproliferative action in breast cancer epithelial cells.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoprecipitação da Cromatina , Feminino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Células Tumorais Cultivadas , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA