Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Semin Cell Dev Biol ; 132: 120-131, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35042675

RESUMO

Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Enzimas Desubiquitinantes/metabolismo
2.
Hum Mol Genet ; 27(11): 1955-1971, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788202

RESUMO

Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the bioUb strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.


Assuntos
Síndrome de Angelman/genética , Ácido Aspártico Proteases/genética , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/fisiopatologia , Animais , Drosophila , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação/genética
3.
Methods Mol Biol ; 2602: 95-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446969

RESUMO

Ubiquitination signals are regulated in time and space due to the coordinated action of E3s and DUBs, which enables the precise control of cellular function and homeostasis. Mutations in all types of ubiquitin-proteasome system (UPS) components are related to pathological conditions. The identification of E3/DUBs' ubiquitinated substrates can provide a clearer view of the molecular mechanisms underlying those diseases. However, the analysis of ubiquitinated proteins is not trivial. Here, we propose a protocol to identify DUB/substrate pairs, by combining DUB silencing, specific pull-down of the substrate, and image analysis of its ubiquitinated fraction.


Assuntos
Pesquisa , Ubiquitina , Interferência de RNA , Ubiquitina/genética , Proteínas Ubiquitinadas , Enzimas Desubiquitinantes/genética
4.
Methods Mol Biol ; 2051: 265-276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552633

RESUMO

Regulation by ubiquitin (Ub) and ubiquitin-like (UbL) modifiers can confer their substrate proteins a myriad of assignments, such as inducing protein-protein interactions, the internalization of membrane proteins, or their degradation via the proteasome. The underlying code regulating those diverse endpoints appears to be based on the topology of the ubiquitin chains formed.Experimental characterization of the specific regulation mediated by Ub and UbLs is not trivial. The substoichiometric levels of Ub- and UbL-modified proteins greatly limit their analytical detection in a background of more abundant proteins. Therefore, modified proteins or peptides must be enriched prior to any downstream detection analysis. For that purpose, we recently developed a GFP-tag based isolation strategy. Here we illustrate the usefulness of combining GFP-tag isolation strategy with mass spectrometry (MS) to identify Ub- and UbL-modified residues within the GFP-tagged protein, as well as to uncover the types of Ub and UbL chains formed.


Assuntos
Espectrometria de Massas/métodos , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Proteínas de Fluorescência Verde , Ubiquitinação
5.
Front Physiol ; 10: 534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130875

RESUMO

The ubiquitin E3 ligase UBE3A has been widely reported to interact with the proteasome, but it is still unclear how this enzyme regulates by ubiquitination the different proteasomal subunits. The proteasome receptor DDI1 has been identified both in Drosophila photoreceptor neurons and in human neuroblastoma cells in culture as a direct substrate of UBE3A. Here, we further characterize this regulation, by identifying the UBE3A-dependent ubiquitination sites and ubiquitin chains formed on DDI1. Additionally, we found one deubiquitinating enzyme that is capable of reversing the action of UBE3A on DDI1. The complete characterization of the ubiquitination pathway of an UBE3A substrate is important due to the role of this E3 ligase in rare neurological disorders as Angelman syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA