Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Radiol Prot ; 44(3)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39019049

RESUMO

This paper presents a proposed revision of the International Atomic Energy Agency transport regulations, related to theA1andA2limit values used to determine the radioactive transport classification. Based on the 'Qsystem', a novel methodology was introduced to deriveQAandQBvalues related to scenarios involving external exposure from a distant source. These values are key parameters that respectively represent the total effective dose and total equivalent dose to the skin, from all primary and secondary particles contributing to radiation exposure. The International Working Group (WGA1/A2) is established and associated with the TRANSSC Technical Expert Group on Radiation Protection. A review of theA1andA2values is performed in response to identified limitations within the existingQsystem. The followed approach is based on Monte Carlo simulations that enabled the development of transfer functions aimed at reducing computational time and increasing the flexibility of dose evaluations for any radionuclide with known particle emission spectra. This method allows updating theQAandQBvalues to account for future data evolutions (decay data, fluence-to-dose conversion coefficients) and standardizing the calculation of regulation limits across all referenced radionuclides and scenarios related to external exposure. The transfer functions are established using three Monte Carlo simulation codes-FLUKA, Geant4, and MCNP-and address the previous limitations of the 'Qsystem', reflecting the latest International Commission for Radiation Protection recommendations and improvements in calculation techniques. The results of the WG show consistent agreement across the codes, with minor discrepancies observed at low primary energies due to statistical uncertainties and different handling of stopping power for electrons/positrons in the codes. This revised approach aligns with current standards and recommendations, ensuring that the radiological consequences of transport accidents are acceptable for the newA1andA2limits from a radiological protection perspective.


Assuntos
Método de Monte Carlo , Proteção Radiológica , Proteção Radiológica/normas , Humanos , Doses de Radiação , Meios de Transporte , Agências Internacionais , Monitoramento de Radiação/métodos , Simulação por Computador
2.
J Radiol Prot ; 42(1)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34801994

RESUMO

Handling of radioactive material by operators can lead to contamination at the surface of the skin in case of an accident. The quantification of the dose received by the skin due to a contamination scenario is performed by means of dedicated dose coefficients as it is the case for other radiation protection dose quantities described in the literature. However, most available coefficients do not match realistic scenarios according to state-of-the-art of science and technology. Therefore, this work deals with dedicated dose conversion factors for skin contamination. Since there is an increasing demand on dose coefficients in general, these specific coefficients can be used for various calculations in radiation protection. In this work a method to evaluate such coefficients for the skin contamination dose related to photons, electrons, positrons, alpha and neutron particles is proposed. The coefficients are generated using Monte-Carlo simulations with three well established calculation codes (FLUKA, MCNP, and GEANT4). The results of the various codes are compared against each other for benchmarking purposes. The new dose coefficients allow the computation of the skin received dose, in the case of skin contamination scenario of an individual, taking into account the decay radiation of the radionuclides of interest. To benchmark the quantity derived here, comparisons of radionuclide contamination doses to the skin using the VARSKIN code available in the literature are performed with the results of this work.


Assuntos
Benchmarking , Fótons , Simulação por Computador , Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Doses de Radiação , Radiometria
3.
Appl Radiat Isot ; 176: 109892, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418729

RESUMO

Fluence to Local Skin Dose Conversion Coefficients (LSD-CC) are radiological protection quantities used for external radiation exposures which allow the conversion of particle fluences into local skin equivalent dose. The International Commission on Radiological Protection published LSD-CC for electrons with an energy range from 10 keV to 10 MeV. However, the literature does not address these radiation protection quantities for all particle types, in particular for photons. In this article, computed LSD-CC values for photons are presented which enrich the literature and are of interest for the radiation protection community. As an example for an application of the use of the computed LSD-CC values, the IAEA A1/A2 working group, which supports the review of the international regulation related to the transport of radioactive material, has decided to estimate the dose to the skin using such coefficients. In this publication, LSD-CC for photons are computed and benchmarked using GEANT4, FLUKA and MCNP. In addition, the FLUKA Monte-Carlo calculation code is used to compute the LSD-CC values for electrons and positrons to compare with existing data in the literature and validate the presented models. As one application of these LSD-CC values, the transfer functions for calculating the IAEA A-values are determined using the LSD-CC and are compared to a one-step direct calculation method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA