Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Inorg Chem ; 62(7): 3178-3185, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36757816

RESUMO

The combination of a soft phosphorus and a hard oxygen donor in the new ligand HacacTRIP leads to excellent site selectivity for the coordination of two different metal cations of matching Pearson character. The deprotonation step required for coordinating the acetylacetone oxygen donor further increases the selectivity. In contrast to most phosphines, the use of the caged phosphatriptycene motif enables a rigid and directional orientation of the phosphorus binding site which is required to form stable coordination network structures. In addition to the synthesis of HacacTRIP, we present its selective coordination. The deprotonated acetylacetone was selectively bound to CuII and FeIII. The solid state structure of the former displays a rare axial coordination of chloroform molecules. The phosphorus donor was selectively coordinated to the monovalent coinage metal cations CuI, AgI, and AuI. The CuI and AgI complexes represent the first examples in which a phosphatriptycene is bound to these metal cations. Heterometallic coordination compounds were characterized with combinations of these two groups. They comprise an oligonuclear CuI/CuII mixed-valence compound in which iodide binds to both CuI and CuII cations and a complex in which acacTRIP- bridges CuII and AuI. In addition to these discrete aggregates, the ligand has been used to link FeIII and AgI into a 2D coordination polymer with unprecedented trigonal planar coordination of three bulky phosphatriptycenes to a cation and resulting honeycomb topology. Its almost regular hexagons underline the desired rigidity of the ditopic acacTRIP- ligand.

2.
Chemistry ; 28(7): e202103555, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856017

RESUMO

Tris(2-(trimethylsilyl)phenyl)phosphine, P(o-TMSC6 H4 )3 , was synthesised and characterised in solution and in the solid state. The large steric bulk prevents most reactions of the phosphorus donor and makes the compound air stable both in the solid state as well as in solution. This shielded phosphine can still undergo three reactions, namely protonation, oxidation to the phosphine oxide under harsh conditions and complexation to AuI , thus forming a complex with linear coordination. Unexpectedly, complexation was unsuccessful with a range of other metal cations. Neither PdII , PtII , ZnII nor HgII reacted and even the remaining coinage metal cations CuI and AgI could not be coordinated. Both the parent molecule as well as the reaction products were structurally characterised by single crystal X-ray diffraction, and the conformational change of geometry required to accommodate the additional atoms was analysed in detail. Apart from chemical oxidation with H2 O2 , P(o-TMSC6 H4 )3 displays reversible electrochemical oxidation with a potential not unlike the one of sterically unencumbered phosphines for which the oxidation is usually not reversible. P(o-TMSC6 H4 )3 can thus be considered a model compound for the investigation of the electronic properties of sterically unencumbered phosphines.

3.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364376

RESUMO

The ditopic molecule 3-(1,3,5-trimethyl-1H-4-pyrazolyl)pentane-2,4-dione (HacacMePz) combines two different Lewis basic sites. It forms a crystalline adduct with the popular halogen bond (XB) donor 2,3,5,6-tetrafluoro-1,4-diiodobenzene (TFDIB) with a HacacMePz:TFDIB ratio of 2:3. In a simplified picture, the topology of the adduct corresponds to a hcb net. In addition to the expected acetylacetone keto O and pyrazole N acceptor sites, a third and less common short contact to a TFDIB iodine is observed: The acceptor site is again the most electron-rich site of the pyrazole π-system. This iminic N atom is thus engaged as the acceptor in two orthogonal halogen bonds. Evaluation of the geometric results and of a single-point calculation agree with respect to the strength of the intermolecular contacts: The conventional N⋯I XB is the shortest (2.909(4) Å) and associated with the highest electron density (0.150 eÅ-3) in the bond critical point (BCP), followed by the O⋯I contact (2.929(3) Å, 0.109 eÅ-3), and the π contact (3.2157(3) Å, 0.075 eÅ-3). If one accepts the idea of deducing interaction energies from energy densities at the BCP, the short contacts also follow this sequence. Two more criteria identify the short N⋯I contact as the most relevant: The associated C-I bond is significantly longer than the database average, and it is the only intermolecular interaction with a negative total energy density in the BCP.


Assuntos
Halogênios , Iodo , Halogênios/química , Pirazóis
4.
Angew Chem Int Ed Engl ; 61(10): e202115379, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874085

RESUMO

The cationic benzyl complex [(Me4 TACD)Sr(CH2 Ph)][A] (Me4 TACD=1,4,7,10-tetramethyltetraazacyclododecane; A=B(C6 H3 -3,5-Me2 )4 ) reacted with two equivalents of phenylsilane to give the bridging hexahydridosilicate complex [(Me4 TACD)2 Sr2 (thf)4 (µ-κ3 : κ3 -SiH6 )][A]2 (3 a). Rapid phenyl exchange between phenylsilane molecules is assumed to generate monosilane SiH4 that is trapped by two strontium hydride cations [(Me4 TACD)SrH(thf)x ]+ . Complex 3 a decomposed in THF at room temperature to give the terminal silanide complex [(Me4 TACD)Sr(SiH3 )(thf)2 ][A], with release of H2 . Upon reaction with a weak Brønsted acid, CO2 , and 1,3,5,7-cyclooctatetraene SiH4 was released. The reaction of a 1 : 2 mixture of cationic benzyl and neutral dibenzyl complex with phenylsilane gave the trinuclear silanide complex [(Me4 TACD)3 Sr3 (µ2 -H)3 (µ3 -SiH3 )2 ][A], while n OctSiH3 led to the trinuclear (n-octyl)pentahydridosilicate complex [(Me4 TACD)3 Sr3 (µ2 -H)3 (µ3 -SiH5 n Oct)][A].

5.
J Am Chem Soc ; 143(11): 4133-4137, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33687197

RESUMO

The halogen bonded adduct between the commonly used constituents quinuclidine and iodobenzene is based on a single weak nitrogen-iodine contact, and the isolation of this adduct was initially unexpected. Iodobenzene does not contain any electron-withdrawing group and therefore represents an unconventional halogen bond donor. Based on excellent diffraction data of high resolution, an electron density study was successfully accomplished and confirmed one of the longest N···I molecular halogen bonds with a distance of 2.9301(4) Å. The topological analysis identified the XB as a directional but weak σ hole interaction and revealed secondary contacts between peripheral regions of opposite charge. These additional contacts and their competition with a nitrogen-based interaction were confirmed by NOESY experiments in solution. Integration enabled us to determine the relative NOE ratios and provided insight regarding the existing interactions.

6.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210096

RESUMO

In the hydrochloride of a pyrazolyl-substituted acetylacetone, the chloride anion is hydrogen-bonded to the protonated pyrazolyl moiety. Equimolar co-crystallization with tetrafluorodiiodobenzene (TFDIB) leads to a supramolecular aggregate in which TFDIB is situated on a crystallographic center of inversion. The iodine atom in the asymmetric unit acts as halogen bond donor, and the chloride acceptor approaches the σ-hole of this TFDIB iodine subtending an almost linear halogen bond, with Cl···I = 3.1653(11) Å and Cl···I-C = 179.32(6)°. This contact is roughly orthogonal to the N-H···Cl hydrogen bond. An analysis of the electron density according to Bader's Quantum Theory of Atoms in Molecules confirms bond critical points (bcps) for both short contacts, with ρbcp = 0.129 for the halogen and 0.321eÅ-3 for the hydrogen bond. Our halogen-bonded adduct represents the prototype for a future class of co-crystals with tunable electron density distribution about the σ-hole contact.

7.
Angew Chem Int Ed Engl ; 60(25): 14179-14187, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33890350

RESUMO

A series of hafnium complexes with a reduced arene of the general formula [K(L)][Hf(Xy-N3 N)(arene)] (Xy-N3 N={(3,5-Me2 C6 H3 )NCH2 CH2 }3 N3- , L=THF, 18-crown-6; arene=C10 H8 2- , C14 H10 2- ) mimic the chemistry of hafnium in its formal oxidation state +II. All compounds were obtained upon reduction of the chlorido complex [HfCl(Xy-N3 N)(thf)] with two equivalents of potassium naphthalenide or anthracenide. The reducing nature and the basicity of the reduced anthracene ligand were explored in the reaction of benzonitrile and azobenzene, and by deprotonation of tert-butylacetylene, respectively. The reduction of benzonitrile provides an initial double nitrile insertion product under kinetic control that rearranges after extrusion of one of the inserted nitriles to a hafnium imido complex as the thermodynamic product. The reduction of azobenzene resulted in a diphenylhydrazido(2-) complex. Treatment of terminal alkynes with the anthracene or diphenylhydrazido(2-) complex led to the selective protonation of the corresponding dianionic ligand.

8.
Angew Chem Int Ed Engl ; 58(1): 211-215, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30381881

RESUMO

While there is a growing interest in harnessing synergistic effects of more than one metal in catalysis, relatively little is known beyond bimetallic systems. This report describes the straightforward access to an air-stable Pd trimer and presents unambiguous reactivity data of its privileged capability to differentiate C-I over C-Br bonds in C-C bond formations (arylation and alkylation) of polyhalogenated arenes, which typical Pd0 and PdI -PdI catalysts fail to deliver. Experimental and computational reactivity data, including the first location of a transition state for bond activation by the trimer, are presented, supporting direct trimer reactivity to be feasible.

9.
Angew Chem Int Ed Engl ; 58(6): 1833-1837, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548105

RESUMO

Facile α-H elimination from tetrakis(trimethylsilylmethyl)titanium precursors to give adducts of (alkylidene)bis(alkyl)titanium complexes is induced by light alkali metal amides of the NNNN-type macrocyclic anionic ligand Me3 TACD [(Me3 TACD)H=1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane]. In the crystal, the alkali metal interacts with the carbene carbon atom or with the CH2 group of the trimethylsilymethyl ligand. The nucleophilic character of the carbene carbon atom was shown by the reaction with benzophenone and terminal acetylenes.

10.
J Am Chem Soc ; 140(9): 3403-3411, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412655

RESUMO

The molecular strontium hydride [(Me3TACD)3Sr3(µ3-H)2][SiPh3] (2) was isolated as the dark red benzene solvate 2·C6H6 in 69% yield from the reaction of [Sr(SiPh3)2(thf)3] (1') with (Me3TACD)H (1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane). This reaction can be considered as a redox process, with the Brønsted acidic amine proton in (Me3TACD)H transformed into the hydride by the anion [SiPh3]-. Trace amounts of water resulted in the formation of [(Me3TACD)3Sr3(µ3-H)(µ3-OH)][SiPh3] (2*), which cocrystallized with 2. Single-crystal X-ray diffraction of 2 revealed a substitutional disorder of a bridging hydride with a hydroxide ligand. Hydride complex 2 was also obtained by hydrogenolysis of [(Me3TACD)Sr(SiPh3)] (3), although pure 3 proved difficult to isolate. In the presence of a 2-fold excess of (Me3TACD)H, the reaction with disilyl 1' gave [(Me3TACD)SiPh3] (4). Complex 2 underwent facile H/D exchange with D2 (1 bar), with the anion [SiPh3]- decomposing concurrently. In the reaction of 2 with 1,1-diphenylethylene (DPE), the anion [SiPh3]- was added to the C═C bond in DPE to give [(Me3TACD)3Sr3H2][Ph2CCH2SiPh3] (5), whereas the cationic cluster [(Me3TACD)3Sr3H2]+ remained unchanged. 9-Fluorenone underwent one-electron reduction with 2 to give the paramagnetic ketyl complex [{(Me3TACD)H}Sr(OC13H8•)2(thf)2] (6). These strontium compounds are structurally similar to the lighter calcium congeners, but more reactive, in particular with regard to fast H/D exchange and [SiPh3]- anion decomposition. DFT studies on the cationic hydride clusters suggest a more pronounced covalent character for strontium compared to calcium. Disilyl 1, strontium diketyl 6, and the calcium congener of 6, [{(Me3TACD)H}Ca(OC13H8·)2] (10), were also characterized by X-ray diffraction.

11.
Acc Chem Res ; 50(5): 1231-1239, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28467707

RESUMO

Molecular compounds, organic and inorganic, crystallize in diverse and complex structures. They continue to inspire synthetic efforts and "crystal engineering", with implications ranging from fundamental questions to pharmaceutical research. The structural complexity of molecular solids is linked with diverse intermolecular interactions: hydrogen bonding with all its facets, halogen bonding, and other secondary bonding mechanisms of recent interest (and debate). Today, high-resolution diffraction experiments allow unprecedented insight into the structures of molecular crystals. Despite their usefulness, however, these experiments also face problems: hydrogen atoms are challenging to locate, and thermal effects may complicate matters. Moreover, even if the structure of a crystal is precisely known, this does not yet reveal the nature and strength of the intermolecular forces that hold it together. In this Account, we show that periodic plane-wave-based density functional theory (DFT) can be a useful, and sometimes unexpected, complement to molecular crystallography. Initially developed in the solid-state physics communities to treat inorganic solids, periodic DFT can be applied to molecular crystals just as well: theoretical structural optimizations "help out" by accurately localizing the elusive hydrogen atoms, reaching neutron-diffraction quality with much less expensive measurement equipment. In addition, phonon computations, again developed by physicists, can quantify the thermal motion of atoms and thus predict anisotropic displacement parameters and ORTEP ellipsoids "from scratch". But the synergy between experiment and theory goes much further than that. Once a structure has been accurately determined, computations give new and detailed insights into the aforementioned intermolecular interactions. For example, it has been debated whether short hydrogen bonds in solids have covalent character, and we have added a new twist to this discussion using an orbital-based theory that once more had been developed for inorganic solids. However, there is more to a crystal structure than a handful of short contacts between neighboring residues. We hence have used dimensionally resolved analyses to dissect crystalline networks in a systematic fashion, one spatial direction at a time. Initially applied to hydrogen bonding, these techniques can be seamlessly extended to halogen, chalcogen, and pnictogen bonding, quantifying bond strength and cooperativity in truly infinite networks. Finally, these methods promise to be useful for (bio)polymers, as we have recently exemplified for α-chitin. At the interface of increasingly accurate and popular DFT methods, ever-improving crystallographic expertise, and new challenging, chemical questions, we believe that combined experimental and theoretical studies of molecular crystals are just beginning to pick up speed.

12.
Inorg Chem ; 57(18): 11775-11781, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30153016

RESUMO

In2Se3 has been known for over 100 years and recently attracted interest as a promising candidate for a variety of applications, such as solar cells, photodiodes, and phase-change memories. Despite the broad concern for possible uses, its polymorphism and structure are poorly characterized. By combining X-ray diffraction, transmission electron microscopy, and quantum-chemical calculations, we present here the crystal structures of two layered room-temperature polytypes: 3R and 2H In2Se3. Both polymorphs are stacking variants of the same Se-In-Se-In-Se layers comprising two coordination environments for the In atoms, one tetrahedral and one octahedral. By using chemical-bonding analysis, we look at the different In positions in α-In2Se3 and compare them to those in the metastable ß-phase.

13.
Chemistry ; 23(68): 17213-17216, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29083060

RESUMO

A series of light alkali metal organoperoxides [MOOR] (M=Li, Na, K; R=tBu, CMe2 Ph) were isolated in mononuclear form, aided by the tetradentate and neutral NNNN-type macrocycle Me4 TACD (L; Me4 [12]aneN4 =1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and strong hydrogen bonds from additional ROOH molecules. The Na and K compounds are characterized by short O-H⋅⋅⋅O contacts, in the case of the Na derivative as short as 2.41 Å.

14.
J Chem Phys ; 147(7): 074112, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830176

RESUMO

Anisotropic displacement parameters (ADPs) are commonly used in crystallography, chemistry, and related fields to describe and quantify thermal motion of atoms. Within the very recent years, these ADPs have become predictable by lattice dynamics in combination with first-principles theory. Here, we study four very different molecular crystals, namely, urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene, by first-principles theory to assess the quality of ADPs calculated in the quasi-harmonic approximation. In addition, we predict both the thermal expansion and thermal motion within the quasi-harmonic approximation and compare the predictions with the experimental data. Very reliable ADPs are calculated within the quasi-harmonic approximation for all four cases up to at least 200 K, and they turn out to be in better agreement with the experiment than those calculated within the harmonic approximation. In one particular case, ADPs can even reliably be predicted up to room temperature. Our results also hint at the importance of normal-mode anharmonicity in the calculation of ADPs.

15.
Biomacromolecules ; 17(3): 996-1003, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26828306

RESUMO

Chitin is an abundant biopolymer that stabilizes the exoskeleton of insects and gives structure to plants. Its macroscopic properties go back to an intricate network of hydrogen bonds that connect the polymer strands, and these intermolecular links have been under ongoing study. Here, we use atomistic simulations to explore hydrogen bonding in the most abundant form, α-chitin. The crystal structure exhibits disorder, and so discrete models are systematically derived as suitable approximants to the macroscopic material. These models then allow us to perform dispersion-corrected density-functional theory (DFT-D) simulations on the three-dimensional crystal network and on lower-dimensional fragments. Thereby, we rationalize the nature of hydrogen bonding and the role of crystallographic disorder for the stability of α-chitin, and complement previous, larger-scale molecular-dynamics (MD) simulations as well as recent fiber-diffraction experiments. Our results provide new, atomic-level insight into one of Nature's most abundant building materials, and the techniques and concepts are likely transferable to other biopolymers.


Assuntos
Quitina/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio
16.
J Chem Phys ; 145(23): 234512, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010090

RESUMO

Thermal properties of solid-state materials are a fundamental topic of study with important practical implications. For example, anisotropic displacement parameters (ADPs) are routinely used in physics, chemistry, and crystallography to quantify the thermal motion of atoms in crystals. ADPs are commonly derived from diffraction experiments, but recent developments have also enabled their first-principles prediction using periodic density-functional theory (DFT). Here, we combine experiments and dispersion-corrected DFT to quantify lattice thermal expansion and ADPs in crystalline α-sulfur (S8), a prototypical elemental solid that is controlled by the interplay of covalent and van der Waals interactions. We begin by reporting on single-crystal and powder X-ray diffraction measurements that provide new and improved reference data from 10 K up to room temperature. We then use several popular dispersion-corrected DFT methods to predict vibrational and thermal properties of α-sulfur, including the anisotropic lattice thermal expansion. Hereafter, ADPs are derived in the commonly used harmonic approximation (in the computed zero-Kelvin structure) and also in the quasi-harmonic approximation (QHA) which takes the predicted lattice thermal expansion into account. At the PPBE+D3(BJ) level, the QHA leads to excellent agreement with experiments. Finally, more general implications of this study for theory and experiment are discussed.

17.
Angew Chem Int Ed Engl ; 55(31): 8966-9, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27356513

RESUMO

The novel [Ru(Acriphos)(PPh3 )(Cl)(PhCO2 )] [1; Acriphos=4,5-bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2 O without the need for amine bases as co-reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h(-1) were achieved, thus rendering 1 one of the most active catalysts for CO2 hydrogenations under additive-free conditions reported to date. The thermodynamic stabilization of the reaction product by the reaction medium, through hydrogen bonds between formic acid and clusters of solvent or water, were rationalized by DFT calculations. The relatively low final concentration of formic acid obtained experimentally under catalytic conditions (0.33 mol L(-1) ) was shown to be limited by product-dependent catalyst inhibition rather than thermodynamic limits, and could be overcome by addition of small amounts of acetate buffer, thus leading to a maximum concentration of free formic acid of 1.27 mol L(-1) , which corresponds to optimized values of TON=16×10(3) and TOFavg ≈10(3)  h(-1) .

18.
J Am Chem Soc ; 137(12): 4164-72, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25790253

RESUMO

A catalytic protocol to convert aryl and heteroaryl chlorides to the corresponding trifluoromethyl sulfides is reported herein. It relies on a relatively inexpensive Ni(cod)2/dppf (cod = 1,5-cyclooctadiene; dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst system and the readily accessible coupling reagent (Me4N)SCF3. Our computational and experimental mechanistic data are consistent with a Ni(0)/Ni(II) cycle and inconsistent with Ni(I) as the reactive species. The relevant intermediates were prepared, characterized by X-ray crystallography, and tested for their catalytic competence. This revealed that a monomeric tricoordinate Ni(I) complex is favored for dppf and Cl whose role was unambiguously assigned as being an off-cycle catalyst deactivation product. Only bidentate ligands with wide bite angles (e.g., dppf) are effective. These bulky ligands render the catalyst resting state as [(P-P)Ni(cod)]. The latter is more reactive than Ni(P-P)2, which was found to be the resting state for ligands with smaller bite angles and suffers from an initial high-energy dissociation of one ligand prior to oxidative addition, rendering the system unreactive. The key to effective catalysis is hence the presence of a labile auxiliary ligand in the catalyst resting state. For more challenging substrates, high conversions were achieved via the employment of MeCN as a traceless additive. Mechanistic data suggest that its beneficial role lies in decreasing the energetic span, therefore accelerating product formation. Finally, the methodology has been applied to synthetic targets of pharmaceutical relevance.

19.
Chemistry ; 21(38): 13221-4, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26332229

RESUMO

A new transition metal-free method for the preparation of substituted imidazoles from easy-to-handle amidine hydrochlorides and bromoacetylenes has been developed. The reactions proceed in air and use inexpensive K2 CO3 as base. Additions of 2,2'-bipyridine and water have beneficial effects on the product yields. Various di- and trisubstituted imidazoles have been prepared in good yields (up to 88 %).

20.
Chemistry ; 21(40): 13971-82, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26272697

RESUMO

Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA