RESUMO
Phospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences. Here, we describe the first crystal structures of hPLD1 and hPLD2 catalytic domains and identify novel structural elements and functional differences between the prokaryotic and eukaryotic enzymes. Furthermore, structure-based mutation studies and structures of inhibitor-hPLD complexes allowed us to elucidate the binding modes of dual and isoform-selective inhibitors, highlight key determinants of isoenzyme selectivity and provide a basis for further structure-based drug discovery and functional characterization of this therapeutically important superfamily of enzymes.
Assuntos
Fosfolipase D/ultraestrutura , Sequência de Aminoácidos , Domínio Catalítico , Desenho de Fármacos , Humanos , Isoenzimas/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-AtividadeRESUMO
Molecular dynamics was used to optimize the droperidol-hERG complex obtained from docking. To accommodate the inhibitor, residues T623, S624, V625, G648, Y652, and F656 did not move significantly during the simulation, while F627 moved significantly. Binding sites in cryo-EM structures and in structures obtained from molecular dynamics simulations were characterized using solvent mapping and Atlas ligands, which were negative images of the binding site, were generated. Atlas ligands were found to be useful for identifying human ether-á-go-go-related potassium channel (hERG) inhibitors by aligning compounds to them or by guiding the docking of compounds in the binding site. A molecular dynamics optimized structure of hERG led to improved predictions using either compound alignment to the Atlas ligand or docking. The structure was also found to be suitable to define a strategy for lowering inhibition based on the proposed binding mode of compounds in the channel.
Assuntos
Canais de Potássio Éter-A-Go-Go , Éter , Sítios de Ligação , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Ligantes , SolventesRESUMO
We analyzed the influence of calculated physicochemical properties of more than 20,000 compounds on their P-gp and BCRP mediated efflux, microsomal stability, hERG inhibition, and plasma protein binding. Our goal was to provide guidance for designing compounds with desired pharmacokinetic profiles. Our analysis showed that compounds with ClogP less than 3 and molecular weight less than 400 will have high microsomal stability and low plasma protein binding. Compounds with logD less than 2.2 and/or basic pKa larger than 5.3 are likely to be BCRP substrates and compounds with basic pKa less than 5.2 and/or acidic pKa less than 13.4 are less likely to inhibit hERG. Based on these results, compounds with MW < 400, ClogP < 3, basic pKa < 5.2 and acidic pKa < 13.4 are likely to have good bioavailability and low hERG inhibition.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Sanguíneas/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Animais , Proteínas Sanguíneas/química , Físico-Química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , Microssomos/química , Microssomos/metabolismo , Estrutura Molecular , Peso Molecular , Proteínas de Neoplasias/química , Ratos , Relação Estrutura-AtividadeRESUMO
Nrf2 is a transcription factor regulating expression of the Phase II Antioxidant Response and plays an important role in neuroprotection and detoxification. Nrf2 activation is inhibited by interaction with Keap1. Covalent Keap1 inhibitors such as dimethyl fumarate (DMF) and RTA-408 are either on the market or in late stage clinical trials which implies potential benefit of Nrf2 activation. Activation of Nrf2 by disrupting Nrf2-Keap1 interaction through a non-covalent small molecule is an attractive approach with the promise of greater selectivity. However, there are no known non-covalent Nrf2 activators with acceptable pharmacokinetic properties to test the hypothesis in vivo. Based on our early reported work, using structural-based design, followed by extensive SAR exploration, we have identified a novel series of non-covalent Nrf2 activators, with sub-nanomolar binding affinity on Keap1 and single digit nanomolar activity in an astrocyte assay. A representative analog shows excellent oral PK and good Nrf2-dependent gene inductions in kidney. These results provide a peripheral in vivo tool compound to validate the biology of non-covalent activation of Nrf2.
Assuntos
Desenho de Fármacos , Fator 2 Relacionado a NF-E2/agonistas , Administração Oral , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/metabolismo , Meia-Vida , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Domínios e Motivos de Interação entre Proteínas , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines.
Assuntos
Proteína Quinase C-theta/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Concentração Inibidora 50 , Interleucina-2/metabolismo , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologiaRESUMO
RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series.
Assuntos
Hidrocarbonetos Fluorados/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Relação Estrutura-Atividade , Sulfonamidas/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Hidrocarbonetos Fluorados/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sulfonamidas/farmacologiaRESUMO
The nuclear receptor RORγ plays a central role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including TH17 cells. RORγ-dependent inflammation has been implicated in the pathogenesis of several major autoimmune diseases and thus RORγ is an attractive target for therapeutic intervention in these diseases. Starting from a lead biaryl compound 4a, replacement of the head phenyl moiety with a substituted aminopyrazole group resulted in a series with improved physical properties. Further SAR exploration led to analogues (e.g., 4j and 5m) as potent RORγ inverse agonists.
Assuntos
Benzamidas/química , Benzamidas/farmacologia , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Pirazóis/química , Pirazóis/farmacologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Humanos , Interleucina-17/imunologia , Camundongos , Modelos Moleculares , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologiaRESUMO
RORγt is a pivotal regulator of a pro-inflammatory gene expression program implicated in the pathology of several major human immune-mediated diseases. Evidence from mouse models demonstrates that genetic or pharmacological inhibition of RORγ activity can block the production of pathogenic cytokines, including IL-17, and convey therapeutic benefit. We have identified and developed a biaryl-carboxylamide series of RORγ inverse agonists via a structure based design approach. Co-crystal structures of compounds 16 and 48 supported the design approach and confirmed the key interactions with RORγ protein; the hydrogen bonding with His479 was key to the significant improvement in inverse agonist effect. The results have shown this is a class of potent and selective RORγ inverse agonists, with demonstrated oral bioavailability in rodents.
Assuntos
Amidas/química , Amidas/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Amidas/farmacocinética , Animais , Compostos de Bifenilo/farmacocinética , Linhagem Celular , Citocinas/imunologia , Descoberta de Drogas , Humanos , Ligação de Hidrogênio , Interleucina-17/imunologia , Camundongos , Simulação de Acoplamento Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , RatosRESUMO
PIM kinases are implicated in variety of cancers by promoting cell survival and proliferation and are targets of interest for therapeutic intervention. We have identified a low-nanomolar pan-PIM inhibitor (PIM1/2/3 potency 5:14:2nM) using structure based modeling. The crystal structure of this compound with PIM1 confirmed the predicted binding mode and protein-ligand interactions except those in the acidic ribose pocket. We show the SAR suggesting the importance of having a hydrogen bond donor in this pocket for inhibiting PIM2; however, this interaction is not important for inhibiting PIM1 or PIM3. In addition, we report the discovery of a new class of PIM inhibitors by using computational de novo design tool implemented in MOE software (Chemical Computing Group). These inhibitors have a different interaction profile.
Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Eletricidade Estática , Relação Estrutura-AtividadeRESUMO
Analytic formulae are used to estimate the error for two virtual screening metrics, enrichment factor and area under the ROC curve. These analytic error estimates are then compared to bootstrapping error estimates, and shown to have excellent agreement with respect to area under the ROC curve and good agreement with respect to enrichment factor. The major advantage of the analytic formulae is that they are trivial to calculate and depend only on the number of actives and inactives and the measured value of the metric, information commonly reported in papers. In contrast to this, the bootstrapping method requires the individual compound scores. Methods for converting the error, which is calculated as a variance, into more familiar error bars are also discussed.
Assuntos
Simulação de Acoplamento Molecular/estatística & dados numéricos , Área Sob a Curva , Descoberta de Drogas/métodos , Descoberta de Drogas/estatística & dados numéricos , Proteínas/química , Curva ROC , Interface Usuário-ComputadorRESUMO
Keap1 binds to the Nrf2 transcription factor to promote its degradation, resulting in the loss of gene products that protect against oxidative stress. While cell-active small molecules have been identified that modify cysteines in Keap1 and effect the Nrf2 dependent pathway, few act through a non-covalent mechanism. We have identified and characterized several small molecule compounds that specifically bind to the Keap1 Kelch-DC domain as measured by NMR, native mass spectrometry and X-ray crystallography. One compound upregulates Nrf2 response genes measured by a luciferase cell reporter assay. The non-covalent inhibition strategy presents a reasonable course of action to avoid toxic side-effects due to non-specific cysteine modification.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Transporte , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Several advances in the fields of crystallography, molecular modeling, biophysical assays and chemistry are converging to making protein-protein interaction targets more amenable to drug design. These include steps towards improving crystallization of protein-protein complexes, identifying the clusters of residues that constitute putative small molecule binding 'hot spots', generating new methods for detecting the binding of small molecules to target proteins, and generating custom libraries via diversity oriented synthesis to enable the identification of natural-product-like hits.
Assuntos
Desenho de Fármacos , Mapeamento de Interação de Proteínas , Cristalização , Ligação Proteica , Proteínas/química , Bibliotecas de Moléculas PequenasRESUMO
Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/ß-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3ß paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to â¼37-fold selectivity for GSK3α over GSK3ß with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3ß and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.
Assuntos
Quinase 3 da Glicogênio Sintase , Proteínas Serina-Treonina Quinases , Glicogênio Sintase Quinase 3 beta , Fosforilação , Proliferação de Células/fisiologiaRESUMO
Phospholipase D (PLD) is a phospholipase enzyme responsible for hydrolyzing phosphatidylcholine into the lipid signaling molecule, phosphatidic acid, and choline. From a therapeutic perspective, PLD has been implicated in human cancer progression as well as a target for neurodegenerative diseases, including Alzheimer's. Moreover, knockdown of PLD rescues the ALS phenotype in multiple Drosophila models of ALS (amyotrophic lateral sclerosis) and displays modest motor benefits in an SOD1 ALS mouse model. To further validate whether inhibiting PLD is beneficial for the treatment of ALS, a brain penetrant small molecule inhibitor with suitable PK properties to test in an ALS animal model is needed. Using a combination of ligand-based drug discovery and structure-based design, a dual PLD1/PLD2 inhibitor was discovered that is single digit nanomolar in the Calu-1 cell assay and has suitable PK properties for in vivo studies. To capture the in vivo measurement of PLD inhibition, a transphosphatidylation pharmacodynamic LC-MS assay was developed, in which a dual PLD1/PLD2 inhibitor was found to reduce PLD activity by 15-20-fold.
RESUMO
The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD/HDAC5 signaling.
Assuntos
Azóis/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Azóis/síntese química , Azóis/química , Azóis/farmacocinética , Disponibilidade Biológica , Histona Desacetilases/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
Apoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor 3. This effort led to the discovery of 32, a potent (cell IC50 = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Clu = 1.6/56 L/h/kg and Kp,uu = 0.46) for proof-of-pharmacology studies. Specifically, the ability of 32 to inhibit ASK1 in the central nervous system (CNS) was evaluated in a human tau transgenic (Tg4510) mouse model exhibiting elevated brain inflammation. In this study, transgenic animals treated with 32 (at 3, 10, and 30 mg/kg, BID/PO for 4 days) showed a robust reduction of inflammatory markers (e.g., IL-1ß) in the cortex, thus confirming inhibition of ASK1 in the CNS.
Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Clinical studies have reported overexpression of PDE5 and elevation of intracellular cyclic GMP in various types of cancer cells. ABCC5 transports cGMP out of the cells with high affinity. PDE5 inhibitors prevent both cellular metabolism and cGMP efflux by inhibiting ABCC5 as well as PDE5. Increasing intracellular cGMP is hypothesized to promote apoptosis and growth restriction in tumor cells and also has potential for clinical use in treatment of cardiovascular disease and erectile dysfunction. Vardenafil is a potent inhibitor of both PDE5 and ABCC5-mediated cGMP cellular efflux. Nineteen novel vardenafil analogs that have been predicted as potent inhibitors by VLS were chosen for tests of their ability to inhibit ATP- dependent transport of cGMP by measuring the accumulation of cyclic GMP in inside-out vesicles. AIM: In this study, we investigated the ability of nineteen new compounds to inhibit ABCC5- mediated cGMP transport. We also determined the Ki values of the six most potent compounds. METHODS: Preparation of human erythrocyte inside out vesicles and transport assay. RESULTS: Ki values for six of nineteen compounds that showed more than 50 % inhibition of cGMP transport in the screening test were determined and ranged from 1.1 to 23.1 µM. One compound was significantly more potent than the positive control, sildenafil. CONCLUSION: Our findings show that computational screening correctly identified vardenafil-analogues that potently inhibit cGMP efflux-pumps from cytosol and could have substantial clinical potential in treatment of patients with diverse disorders.
Assuntos
GMP Cíclico/metabolismo , Descoberta de Drogas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dicloridrato de Vardenafila/química , Dicloridrato de Vardenafila/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Conformação Molecular , Inibidores da Fosfodiesterase 5/farmacologia , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Apoptosis signal-regulating kinase 1 (ASK1) is a key mediator in the apoptotic and inflammatory cellular stress response. To investigate the therapeutic value of modulating this pathway in neurological disease, we have completed medicinal chemistry studies to identify novel CNS-penetrant ASK1 inhibitors starting from peripherally restricted compounds reported in the literature. This effort led to the discovery of 21, a novel ASK1 inhibitor with good potency (cell IC50 = 138 nM), low clearance (rat Cl/Clu = 0.36/6.7 L h-1 kg-1) and good CNS penetration (rat K p,uu = 0.38).
RESUMO
An integrated strategy that combined in silico screening and tiered biochemical assays (enzymatic, in vitro, and ex vivo) was used to identify and characterize effective small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A (BoNT/A). Virtual screening was initially performed by computationally docking compounds of the National Cancer Institute (NCI) database into the active site of BoNT/A light chain (LC). A total of 100 high-scoring compounds were evaluated in a high-performance liquid chromatography (HPLC)-based protease assay using recombinant full-length BoNT/A LC. Seven compounds that significantly inhibited the BoNT/A protease activity were selected. Database search queries of the best candidate hit [7-((4-nitro-anilino)(phenyl)methyl)-8-quinolinol (NSC 1010)] were performed to mine its nontoxic analogs. Fifty-five analogs of NSC 1010 were synthesized and examined by the HPLC-based assay. Of these, five quinolinol derivatives that potently inhibited both full-length BoNT/A LC and truncated BoNT/A LC (residues 1 to 425) were selected for further inhibition studies in neuroblastoma (N2a) cell-based and tissue-based mouse phrenic nerve hemidiaphragm assays. Consistent with enzymatic assays, in vitro and ex vivo studies revealed that these five quinolinol-based analogs effectively neutralized BoNT/A toxicity, with CB 7969312 exhibiting ex vivo protection at 0.5 microM. To date, this is the most potent BoNT/A small-molecule inhibitor that showed activity in an ex vivo assay. The reduced toxicity and high potency demonstrated by these five compounds at the biochemical, cellular, and tissue levels are distinctive among the BoNT/A small-molecule inhibitors reported thus far. This study demonstrates the utility of a multidisciplinary approach (in silico screening coupled with biochemical testing) for identifying promising small-molecule BoNT/A inhibitors.
Assuntos
Antitoxinas/farmacologia , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/metabolismo , Hidroxiquinolinas/farmacologia , Nervo Frênico/efeitos dos fármacos , Animais , Antitoxinas/química , Toxinas Botulínicas Tipo A/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Feminino , Hidroxiquinolinas/síntese química , Hidroxiquinolinas/química , Técnicas In Vitro , Camundongos , Estrutura MolecularRESUMO
Structural analysis of a known apoptosis signal-regulating kinase 1 (ASK1) inhibitor bound to its kinase domain led to the design and synthesis of the novel macrocyclic inhibitor 8 (cell IC50 = 1.2 µM). The profile of this compound was optimized for CNS penetration following two independent strategies: a rational design approach leading to 19 and a parallel synthesis approach leading to 26. Both analogs are potent ASK1 inhibitors in biochemical and cellular assays (19, cell IC50 = 95 nM; 26, cell IC50 = 123 nM) and have moderate to low efflux ratio (ER) in an MDR1-MDCK assay (19, ER = 5.2; 26, ER = 1.5). In vivo PK studies revealed that inhibitor 19 had moderate CNS penetration (Kpuu = 0.17) and analog 26 had high CNS penetration (Kpuu = 1.0).