Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Wound Repair Regen ; 18(1): 50-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20082681

RESUMO

The therapeutic management of severe radiation burns remains a challenging issue today. Conventional surgical treatment including excision, skin autograft, or flap often fails to prevent unpredictable and uncontrolled extension of the radiation-induced necrotic process. In a recent very severe accidental radiation burn, we demonstrated the efficiency of a new therapeutic approach combining surgery and local cellular therapy using autologous mesenchymal stem cells (MSC), and we confirmed the crucial place of the dose assessment in this medical management. The patient presented a very significant radiation lesion located on the arm, which was first treated by several surgical procedures: iterative excisions, skin graft, latissimus muscle dorsi flap, and forearm radial flap. This conventional surgical therapy was unfortunately inefficient, leading to the use of an innovative cell therapy strategy. Autologous MSC were obtained from three bone marrow collections and were expanded according to a clinical-grade protocol using platelet-derived growth factors. A total of five local MSC administrations were performed in combination with skin autograft. After iterative local MSC administrations, the clinical evolution was favorable and no recurrence of radiation inflammatory waves occurred during the patient's 8-month follow-up. The benefit of this local cell therapy could be linked to the "drug cell" activity of MSC by modulating the radiation inflammatory processes, as suggested by the decrease in the C-reactive protein level observed after each MSC administration. The success of this combined treatment leads to new prospects in the medical management of severe radiation burns and more widely in the improvement of wound repair.


Assuntos
Traumatismos do Braço/terapia , Queimaduras/terapia , Transplante de Células-Tronco Mesenquimais , Lesões por Radiação/terapia , Liberação Nociva de Radioativos , Adulto , Traumatismos do Braço/etiologia , Queimaduras/etiologia , Humanos , Masculino , Doses de Radiação , Procedimentos de Cirurgia Plástica , Transplante de Pele
2.
Leuk Lymphoma ; 48(10): 2032-41, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17917971

RESUMO

Osteolytic bone lesions are common in patients with multiple myeloma (MM), a clonal plasma cell disorder, and result from increased osteoclastic bone resorption and decreased osteoblastic bone formation. Because mesenchymal stem cells (MSCs) are committed towards cells of the osteoblast lineage, we compared the in vitro characteristics of MSCs from the bone marrow of 18 MM patients (MM-MSCs) and eight normal donors (ND-MSCs). MM-MSCs displayed deficient growth that could be explained in part by the reduced expression of several growth factor receptors on the surface of MM-MSCs compared with ND-MSCs. Receptor downregulation was observed on RT-PCR analysis. A major finding was an approximately fivefold higher expression of osteoblast inhibitor DKK1 at transcript and protein levels in MM-MSCs than ND-MSCs. These data suggest that defective osteoblast function in patients with advanced MM may be related not only to factors released by tumor myeloma cells but also to MSC abnormalities.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Idoso , Osso e Ossos/metabolismo , Diferenciação Celular , Feminino , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteólise , Sindecana-1/biossíntese
3.
Stem Cell Res Ther ; 4(1): 1, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23290259

RESUMO

INTRODUCTION: This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. METHODS: PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. RESULTS: We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. CONCLUSIONS: We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Plaquetas/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Adesivos/farmacologia , Animais , Biomarcadores/metabolismo , Plaquetas/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Engenharia Tecidual/métodos
4.
J Cell Physiol ; 205(2): 228-36, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15887229

RESUMO

Mesenchymal stem cells (MSCs) are considered as emergent "universal" cells and various tissue repair programs using MSCs are in development. In vitro expansion of MSCs is conventionally achieved in medium containing fetal calf serum (FCS) and is increased by addition of growth factors. However, for widespread clinical applications, contact of MSCs with FCS must be minimized since it is a putative source of prion or virus transmission. Therefore, because platelets are a natural source of growth factors, we sought to investigate in vitro MSC expansion in response to platelet lysates (PL) obtained from platelet-rich plasma. Human MSCs were expanded in FCS (+/-bFGF)- or PL-supplemented medium through a process of subculture. We demonstrated that PL-containing medium is enriched by growth factors (platelet-derived growth factors (PDGFs), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), insulin-like growth factor-1 (IGF-1) ...) and showed that PL is able to promote MSC expansion, to decrease the time required to reach confluence, and to increase CFU-F size, as compared to the FCS medium. Furthermore, we demonstrated that MSCs cultured in the presence of PL maintain their osteogenic, chondrogenic, and adipogenic differentiation properties and retain their immunosuppressive activity. Therefore, we propose that PL may be a powerful and safe substitute for FCS in development of tissue- and cellular-engineered products in clinical settings using MSCs.


Assuntos
Plaquetas/fisiologia , Substitutos Sanguíneos/efeitos adversos , Extratos Celulares/farmacologia , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/fisiologia , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Substâncias de Crescimento/análise , Humanos , Imunofenotipagem , Cinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA