Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Anal Chem ; 96(1): 127-136, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126724

RESUMO

In vitro/in vivo detection of copper ions is a challenging task but one which is important in the development of new approaches to the diagnosis and treatment of cancer and hereditary diseases such as Alzheimer's, Wilson's, etc. In this paper, we present a nanopipette sensor capable of measuring Cu2+ ions with a linear range from 0.1 to 10 µM in vitro and in vivo. Using the gold-modified nanopipette sensor with a copper chelating ligand, we evaluated the accumulation ability of the liposomal form of an anticancer Cu-containing complex at three levels of biological organization. First, we detected Cu2+ ions in a single cell model of human breast adenocarcinoma MCF-7 and in murine melanoma B16 cells. The insertion of the nanoelectrode did not result in leakage of the cell membrane. We then evaluated the distribution of the Cu-complex in MCF-7 tumor spheroids and found that the diffusion-limited accumulation was a function of the depth, typical for 3D culture. Finally, we demonstrated the use of the sensor for Cu2+ ion detection in the brain of an APP/PS1 transgenic mouse model of Alzheimer's disease and tumor-bearing mice in response to injection (2 mg kg-1) of the liposomal form of the anticancer Cu-containing complex. Enhanced stability and selectivity, as well as distinct copper oxidation peaks, confirmed that the developed sensor is a promising tool for testing various types of biological systems. In summary, this research has demonstrated a minimally invasive electrochemical technique with high temporal resolution that can be used for the study of metabolism of copper or copper-based drugs in vitro and in vivo.


Assuntos
Doença de Alzheimer , Neoplasias , Camundongos , Humanos , Animais , Cobre , Doença de Alzheimer/diagnóstico , Íons , Técnicas Eletroquímicas
2.
Anal Chem ; 95(43): 15943-15949, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856787

RESUMO

ß-Amyloid aggregation on living cell surfaces is described as responsible for the neurotoxicity associated with different neurodegenerative diseases. It is suggested that the aggregation of ß-amyloid (Aß) peptide on neuronal cell surface leads to various deviations of its vital function due to myriad pathways defined by internalization of calcium ions, apoptosis promotion, reduction of membrane potential, synaptic activity loss, etc. These are associated with structural reorganizations and pathologies of the cell cytoskeleton mainly involving actin filaments and microtubules and consequently alterations of cell mechanical properties. The effect of amyloid oligomers on cells' Young's modulus has been observed in a variety of studies. However, the precise connection between the formation of amyloid aggregates on cell membranes and their effects on the local mechanical properties of living cells is still unresolved. In this work, we have used correlative scanning ion-conductance microscopy (SICM) to study cell topography, Young's modulus mapping, and confocal imaging of Aß aggregate formation on living cell surfaces. However, it is well-known that the cytoskeleton state is highly connected to the intracellular level of reactive oxygen species (ROS). The effect of Aß leads to the induction of oxidative stress, actin polymerization, and stress fiber formation. We measured the reactive oxygen species levels inside single cells using platinum nanoelectrodes to demonstrate the connection of ROS and Young's modulus of cells. SICM can be successfully applied to studying the cytotoxicity mechanisms of Aß aggregates on living cell surfaces.


Assuntos
Peptídeos beta-Amiloides , Microscopia , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/química , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Amiloide/química , Fragmentos de Peptídeos/química
3.
Anal Chem ; 94(12): 4901-4905, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35285614

RESUMO

The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs.


Assuntos
Antineoplásicos , Pró-Fármacos , Animais , Cisplatino/química , Cisplatino/farmacologia , Humanos , Células MCF-7 , Camundongos , Pró-Fármacos/química , Distribuição Tecidual
4.
Inorg Chem ; 61(37): 14705-14717, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36047922

RESUMO

We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Carbono , Linhagem Celular Tumoral , Cisplatino/química , Humanos , Hipóxia , Ligantes , Metronidazol/farmacologia , Platina/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
5.
Bioconjug Chem ; 32(4): 763-781, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33691403

RESUMO

Herein, we describe the design, synthesis, and biological evaluation of novel betulin and N-acetyl-d-galactosamine (GalNAc) glycoconjugates and suggest them as targeted agents against hepatocellular carcinoma. We prepared six conjugates derived via the C-3 and C-28 positions of betulin with one or two saccharide ligands. These molecules demonstrate high affinity to the asialoglycoprotein receptor (ASGPR) of hepatocytes assessed by in silico modeling and surface plasmon resonance tests. Cytotoxicity studies in vitro revealed a bivalent conjugate with moderate activity, selectivity of action, and cytostatic properties against hepatocellular carcinoma cells HepG2. An additional investigation confirmed the specific engagement with HepG2 cells by the enhanced generation of reactive oxygen species. Stability tests demonstrated its lability to acidic media and to intracellular enzymes. Therefore, the selected bivalent conjugate represents a new potential agent targeted against hepatocellular carcinoma. Further extensive studies of the cellular uptake in vitro and the real-time microdistribution in the murine liver in vivo for fluorescent dye-labeled analogue showed its selective internalization into hepatocytes due to the presence of GalNAc ligand in comparison with reference compounds. The betulin and GalNAc glycoconjugates can therefore be considered as a new strategy for developing therapeutic agents based on natural triterpenoids.


Assuntos
Acetilgalactosamina/química , Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Triterpenos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
6.
Mol Pharm ; 18(1): 461-468, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264010

RESUMO

In this work, we have developed covalent and low molecular weight docetaxel delivery systems based on conjugation with N-acetyl-d-galactosamine and studied their properties related to hepatocellular carcinoma cells. The resulting glycoconjugates have an excellent affinity to the asialoglycoprotein receptor (ASGPR) in the nanomolar range of concentrations and a high cytotoxicity level comparable to docetaxel. Likewise, we observed the 21-75-fold increase in water solubility in comparison with parent docetaxel and prodrug lability to intracellular conditions with half-life values from 25.5 to 42 h. We also found that the trivalent conjugate possessed selective toxicity against hepatoma cells vs control cell lines (20-35 times). The absence of such selectivity in the case of monovalent conjugates indicates the effect of ligand valency. Specific ASGPR-mediated cellular uptake of conjugates was proved in vitro using fluorescent-labeled analogues. In addition, we showed an enhanced generation of reactive oxygen species in the HepG2 cells, which could be inhibited by the natural ligand of ASGPR. Overall, the obtained results highlight the potential of ASGPR-directed cytostatic taxane drugs for selective therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Docetaxel/administração & dosagem , Glicoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Células A549 , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Células PC-3
7.
Nanomedicine ; 32: 102317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33096245

RESUMO

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Proteínas de Membrana/farmacologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/química , Esferoides Celulares/efeitos dos fármacos
8.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807662

RESUMO

A regio- and diastereoselective synthesis of two types of dispiro derivatives of 2-selenoxoimidazolidin-4-ones, differing in the position of the nitrogen atom in the central pyrrolidine ring of the spiro-fused system-namely, 2-selenoxodispiro[imidazolidine-4,3'-pyrrolidine-2',3″-indoline]-2″,5-diones (5a-h) and 2-senenoxodispiro[imidazolidine-4,3'-pyrrolidine-4',3″-indoline]-2″,5-diones (6a-m)-were developed based on a 1,3-dipolar cycloaddition of azomethine ylides generated from isatin and sarcosine or formaldehyde and sarcosine to 5-arylidene or 5-indolidene-2-selenoxo-tetrahydro-4H-imidazole-4-ones. Selenium-containing dispiro indolinones generally exhibit cytotoxic activity near to the activity of the corresponding oxygen and sulfur-containing derivatives. Compounds 5b, 5c, and 5e demonstrated considerable in vitro cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) test (concentration of compounds that caused 50% death of cells (CC50) 7.6-8.7 µM) against the A549 cancer cell line with the VA13/A549 selectivity index 5.2-6.9; some compounds (5 and 6) increased the level of intracellular reactive oxygen species (ROS) in the experiment on A549 and PC3 cells using platinized carbon nanoelectrode. The tests for p53 activation for compounds 5 and 6 on the transcriptional reporter suggest that the investigated compounds can only have an indirect p53-dependent mechanism of action. For the compounds 5b, 6b, and 6l, the ROS generation may be one of the significant mechanisms of their cytotoxic action.


Assuntos
Citotoxinas , Neoplasias/tratamento farmacológico , Pirrolidinas , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
9.
Anal Chem ; 92(12): 8010-8014, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32441506

RESUMO

In vivo monitoring of reactive oxygen species (ROS) in tumors during treatment with anticancer therapy is important for understanding the mechanism of action and in the design of new anticancer drugs. In this work, a platinized nanoelectrode is placed into a single cell for detection of the ROS signal, and drug-induced ROS production is then recorded. The main advantages of this method are the short incubation time with the drug and its high sensitivity which allows the detection of low intracellular ROS concentrations. We have shown that our new method can measure the ROS response to chemotherapy in tumor-bearing mice in real-time. ROS levels were measured in vivo inside the tumor at different depths in response to doxorubicin. This work provides an effective new approach for the measurement of intracellular ROS by platinized nanoelectrodes.


Assuntos
Antineoplásicos/farmacologia , Técnicas Biossensoriais , Doxorrubicina/farmacologia , Técnicas Eletroquímicas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
10.
J Mol Recognit ; 33(9): e2846, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32212219

RESUMO

We have developed a model for evaluating the integral intercellular interactions in the "endotheliocyte-neutrophil" system and have shown the high variability of adhesion contacts in different donors associated with different expression profiles of neutrophils. Two methods (forсe spectroscopy-spectroscopy and scanning ion-conductance microscopy) showed a decrease in the rigidity of the membrane-cytoskeletal complex of neutrophils under the influence of Staphylococcus aureus 2879 M. Adding this strain to the "endotheliocyte-neutrophil" system caused a statistically significant decrease in the adhesion force and adhesion work, which indicates a change in the expression profile and physicochemical properties of membranes of both types of interacting cells (neutrophils and endotheliocytes).


Assuntos
Células Endoteliais/citologia , Células Endoteliais/microbiologia , Neutrófilos/citologia , Neutrófilos/microbiologia , Staphylococcus aureus/fisiologia , Adulto , Adesão Celular , Comunicação Celular , Linhagem Celular , Humanos , Microscopia , Adulto Jovem
11.
Bioconjug Chem ; 31(5): 1313-1319, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32379426

RESUMO

Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Alcinos/química , Receptor de Asialoglicoproteína/química , Azidas , Técnicas de Química Sintética , Desenho de Fármacos , Esterificação , Galactosamina/química , Células Hep G2 , Humanos , Ligantes , Metano/síntese química , Metano/química , Metano/metabolismo , Metano/farmacologia , Simulação de Acoplamento Molecular , Células PC-3 , Conformação Proteica
12.
Nanomedicine ; 25: 102171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084594

RESUMO

Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.


Assuntos
Neoplasias da Mama/terapia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/terapia , Magnetoterapia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Cobalto/farmacologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Metástase Neoplásica , Temperatura
13.
ACS Appl Bio Mater ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012035

RESUMO

Zn-containing TiO2-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO2-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure. The excellent cytocompatibility of PEO-Zn samples was confirmed by three different methods: monitoring the proliferation of MC3T3-E1 cells, assessing the viability of sheep osteoblast cells using calcein-AM staining and fluorescence microscopy, and incubation with spheroids based on primary osteoblast cells and mouse embryonic fibroblast NIH3T3 cells. The PEO-Zn coatings absorb >60% of the incident light over the UV and Vis-NIR spectral ranges. After 24 h, the PEO-Zn coatings completely inactivate four types of strains: Gram-positive Staphylococcus aureus CSA154 and ATCC29213 and Gram-negative Escherichia coli K261 and U20, and also prevent E. coli U20 and K261 biofilm formation. The superior antibacterial activity is associated with the synergistic effect of Zn2+ ions in safe concentration and reactive oxygen species (ROS) generated in response to either UV irradiation or soft short-term X-ray irradiation. The X-ray irradiation-induced ROS formation by a PEO coating is reported for the first time. The enhanced bactericidal activity after X-ray irradiation compared to UV illumination is attributed to the more intense ROS generation in the first few hours. The results obtained significantly expand the possibilities of using PEO coatings on the surfaces of titanium implants.

14.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000644

RESUMO

Cerium oxide nanoparticles (CeONPs), as part of tissue regeneration matrices, can protect cells from reactive oxygen species and oxidative stress. In addition, they can influence the properties of the scaffold, including its electrospinnability and mechanical strength. In this work, we prepared electrospun fiber mats from a chitosan and polyethylene oxide blend (CS-PEO) with the addition of ceria nanoparticles (CS-PEO-CeONP). The addition of CeONPs resulted in a smaller fiber diameter and higher swelling compared to CS-PEO fiber mats. CeONP-modified fiber mats also had a higher Young's modulus due to the reinforcing effect of the nanoparticles. Both mats had comparable adhesion and cytocompatibility to mesenchymal stem cells, which had a more rounded morphology on CS-PEO-CeONP compared to elongated cells on the CS-PEO mats. Biocompatibility in an in vivo rat model showed no acute toxicity, no septic or allergic inflammation, and no rough scar tissue formation. The degradation of both mats passed the stage of matrix swelling. CS-PEO-CeONP showed significantly slower biodegradation, with most of the matrix remaining in the tissue after 90 days. The reactive inflammation was aseptic in nature with the involvement of multinucleated foreign-body type giant cells and was significantly reduced by day 90. CeONPs induced the formation of the implant's connective tissue capsule. Thus, the introduction of CeONPs influenced the physicochemical properties and biological activity of CS-PEO nanofiber mats.

15.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177118

RESUMO

Recently, nanopore technology has emerged as a promising technique for the rapid, sensitive, and selective detection of various analytes. In particular, the use of nanopores for the detection of copper ions has attracted considerable attention due to their high sensitivity and selectivity. This review discusses the principles of nanopore technology and its advantages over conventional techniques for copper detection. It covers the different types of nanopores used for copper detection, including biological and synthetic nanopores, and the various mechanisms used to detect copper ions. Furthermore, this review provides an overview of the recent advancements in nanopore technology for copper detection, including the development of new nanopore materials, improvements in signal amplification, and the integration of nanopore technology with other analytical methods for enhanced detection sensitivity and accuracy. Finally, we summarize the extensive applications, current challenges, and future perspectives of using nanopore technology for copper detection, highlighting the need for further research in the field to optimize the performance and applicability of the technique.

16.
Biomedicines ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37239032

RESUMO

The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.

17.
Nanomedicine (Lond) ; 18(28): 2105-2123, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127591

RESUMO

Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.


This work introduces a new technique for copper-containing drugs encapsulation in a drug-delivery system. The drug, a promising copper compound, is embedded in lipid nanovesicles ­ tiny fat particles ­ for intravenous injection. In addition to chemical characterization of the obtained drug form, tests on cancer cells showed a noticeable effect, whereas healthy cell types were not harmed. Copper possesses not only anticancer effects but also antimicrobial properties, which are also shown by the drug form, and a test of combined suppression of cancer cell lines and bacteria was successful. Hence, the obtained drug form has the potential for dual treatment of cancer and bacterial infections.


Assuntos
Infecções Bacterianas , Neoplasias da Mama , Humanos , Feminino , Lipossomos , Cobre/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
18.
Artigo em Inglês | MEDLINE | ID: mdl-37888937

RESUMO

Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.

19.
ACS Appl Mater Interfaces ; 15(31): 37274-37289, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499236

RESUMO

We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteogênese , Animais , Camundongos , Titânio/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Regeneração Óssea , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
20.
ACS Appl Mater Interfaces ; 15(10): 12882-12894, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854172

RESUMO

Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.


Assuntos
Antineoplásicos , Pró-Fármacos , Cisplatino/farmacologia , Cisplatino/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA