Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(1): 016102, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976688

RESUMO

The self-assembly of submonolayer amounts of Au on the densely stepped Si(553) surface creates an array of closely spaced "atomic wires" separated by 1.5 nm. At low temperature, charge transfer between the terraces and the row of silicon dangling bonds at the step edges leads to a charge-ordered state within the row of dangling bonds with ×3 periodicity. Interactions between the dangling bonds lead to their ordering into a fully two-dimensional (2D) array with centered registry between adjacent steps. We show that as the temperature is raised, soliton defects are created within each step edge. The concentration of solitons rises with increasing temperature and eventually destroys the 2D order by decoupling the step edges, reducing the effective dimensionality of the system to 1D. This crossover from higher to lower dimensionality is unexpected and, indeed, opposite to the behavior in other systems.

2.
Nano Lett ; 16(4): 2698-704, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26974012

RESUMO

High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains.

3.
Phys Rev Lett ; 111(13): 137203, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116812

RESUMO

Stabilization of the Si(553) surface by Au adsorption results in two different atomically defined chain types, one of Au atoms and one of Si. At low temperature these chains develop two- and threefold periodicity, respectively, previously attributed to Peierls instabilities. Here we report evidence from scanning tunneling microscopy that rules out this interpretation. The ×3 superstructure of the Si chains vanishes for low tunneling bias, i.e., close the Fermi level. In addition, the Au chains remain metallic despite their period doubling. Both observations are inconsistent with a Peierls mechanism. On the contrary, our results are in excellent, detailed agreement with the Si(553)-Au ground state predicted by density-functional theory, where the ×2 periodicity of the Au chain is an inherent structural feature and every third Si atom is spin polarized.

4.
Phys Rev Lett ; 111(15): 156801, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160617

RESUMO

A reversible structural transition is observed on Si(553)-Au by scanning tunneling microscopy, triggered by electrons injected from the tip into the surface. The periodicity of atomic chains near the step edges changes from the 1×3 ground state to a 1×2 excited state with increasing tunneling current. The threshold current for this transition is reduced at lower temperatures. In conjunction with first-principles density-functional calculations it is shown that the 1×2 phase is created by temporary doping of the atom chains. Random telegraph fluctuations between two levels of the tunneling current provide direct access to the dynamics of the phase transition, revealing lifetimes in the millisecond range.

5.
Science ; 254(5033): 842-5, 1991 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17787174

RESUMO

Quantitative theories of superconductivity in alkali-doped C(60) require an accurate and detailed description of the Fermi surface. First-principles calculations of Fermi-surface properties and electronic parameters for K(3)C(60), the prototype fulleride-superconductor, are reported. The Fermi surface has two sheets; the first is free-electron-like, and the second is multiply-connected, forming two interlocked symmetry-equivalent pieces that never touch. The calculated (clean limit) London penetration depth is Lambda = 1600 A. Comparing the Fermi velocity with the experimental coherence length leads to a superconducting pairing strength lambda approximately 5, indicating very strong coupling. Partial nesting in the second Fermi-surface sheet may favor coupling to short-wavelength q,0,0 optic modes.

6.
Science ; 269(5230): 1556-60, 1995 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17789447

RESUMO

A stable high-index surface of silicon, Si(5 5 12), is described. This surface forms a 2 x 1 reconstruction with one of the largest unit cells ever observed, 7.7 angstroms by 53.5 angstroms. Scanning tunneling microscopy (STM) reveals that the 68 surface atoms per 2 x 1 unit cell are reconstructed only on a local scale. A complete structural model for the surface is proposed, incorporating a variety of features known to exist on other stable silicon surfaces. Simulated STM images based on this model have been computed by first-principles electronic-structure methods and show excellent agreement with experiment.

7.
J Phys Chem B ; 110(13): 6841-7, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570993

RESUMO

The basic chemical structure and orientation of ethylene chemisorbed on Si(114)-(2 x 1) at submonolayer coverage is characterized in ultrahigh vacuum using transmission Fourier transform infrared (FTIR) spectroscopy. The spectra are consistent with di-sigma bonding of ethylene to the surface with a preferential molecular orientation over macroscopic lengths. These results are supported by density functional theory (DFT) calculations of vibrational frequencies for optimized ethylene-Si(114) structures occupying the dimer and rebonded atom surface sites. A detailed analysis of the strong angular and polarization dependence of the C-H stretching mode intensities is also consistent with the adsorption structures identified by DFT, indicating that ethylene chemisorbs with the C-C bond axis parallel to the structural rows oriented along the [10] direction on the Si(114)-(2 x 1) surface. The results indicate that the unique structure of this surface makes it an excellent template for elucidating relationships between surface structure and organic reaction mechanisms on silicon.

8.
Phys Rev Lett ; 99(6): 067202, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930864

RESUMO

We have used spin-polarized scanning tunneling spectroscopy to observe the spin polarization state of individual Fe and Cr atoms adsorbed onto Co nanoislands. These magnetic adatoms exhibit stationary out-of-plane spin polarization, but have opposite sign of the exchange coupling between electron states of the adatom and the Co island surface state: Fe adatoms exhibit parallel spin polarization to the Co surface state while Cr adatoms exhibit antiparallel spin polarization. First-principles calculations predict ferromagnetic and antiferromagnetic alignment of the spin moment for individual Fe and Cr adatoms on a Co film, respectively, implying negative spin polarization for Fe and Cr adatoms over the energy range of the Co surface state.

9.
Phys Rev Lett ; 90(17): 176805, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12786093

RESUMO

A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of > or =1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

10.
Science ; 295(5555): 651-4, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11809964

RESUMO

We report on the epitaxial growth of a group-IV ferromagnetic semiconductor, Mn(x)Ge(1-x), in which the Curie temperature is found to increase linearly with manganese (Mn) concentration from 25 to 116 kelvin. The p-type semiconducting character and hole-mediated exchange permit control of ferromagnetic order through application of a +/-0.5-volt gate voltage, a value compatible with present microelectronic technology. Total-energy calculations within density-functional theory show that the magnetically ordered phase arises from a long-range ferromagnetic interaction that dominates a short-range antiferromagnetic interaction. Calculated spin interactions and percolation theory predict transition temperatures larger than measured, consistent with the observed suppression of magnetically active Mn atoms and hole concentration.

11.
Phys Rev Lett ; 100(17): 179702; author reply 179703, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18518349
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA