Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 193(11): 1762-1775, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36822267

RESUMO

Keratoconus (KC) affects the corneal structure, with thinning and bulging outward into a conelike shape. Irregular astigmatism and decreased visual acuity appear during puberty and progress into the mid-30s, with unpredictable disease severity. The cause of KC is recognized as multifactorial, but remains poorly understood. Hormone imbalances are a significant modulator of the onset of KC. This study sought to investigate the role of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in KC, using a three-dimensional, self-assembled matrix in vitro model. Healthy corneal fibroblasts and human KC cells in the corneal stroma were isolated, cultured, and stimulated with stable vitamin C to promote extracellular matrix assembly. Cultures were further stimulated with 2.5 or 10 mIU/mL FSH and 5 or 35 mIU/mL LH. Samples were evaluated for cell proliferation and morphology via BrdU assay and imaging; protein expression was assessed via Western blot analysis. Proliferation was significantly greater in human KC cells compared to healthy corneal fibroblasts with LH stimulation, but no changes were found with FSH stimulation. Additionally, in sex hormone receptors, fibrotic markers, proteoglycans, and members of the gonadotropin signaling pathway were significantly changed, largely driven by exogenous LH. The impact of exogenous FSH/LH in the KC stromal microenvironment was demonstrated. These results highlight the need to further examine the role of FSH/LH in KC and in human corneal homeostasis.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Humanos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Córnea/metabolismo , Transdução de Sinais , Hormônio Liberador de Gonadotropina
2.
Exp Eye Res ; 237: 109717, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944849

RESUMO

Prolonged hyperglycemia during diabetes mellitus (DM) is associated with severe complications that may affect both the anterior and posterior ocular segments, leading to impaired vision or blindness. The cornea is a vital part of the eye that has a dual role as a protective transparent barrier and as a major refractive structure and is likewise negatively affected by hyperglycemia in DM. Understanding the cellular and molecular mechanisms underlying the phenotypic changes associated with DM is critical to developing targeted therapies to promote tissue integrity. In this proof-of-concept study, we applied a cell sheet-based approach to generate stacked constructs of physiological corneal thickness using primary human corneal fibroblasts isolated from cadaveric control (healthy), Type 1 DM and Type 2 DM corneal tissues. Self-assembled corneal stromal sheets were generated after 2 weeks in culture, isolated, and subsequently assembled to create stacked constructs, which were evaluated using transmission electron microscopy. Analysis of gene expression patterns revealed significant downregulation of fibrotic markers, α-smooth muscle actin, and collagen type 3, with stacking in Type 2 DM constructs when compared to controls. IGF1 expression was significantly upregulated in Type 2 DM constructs compared to controls with a significant reduction induced by stacking. This study describes the development of a thicker, self-assembled corneal stromal construct as a platform to evaluate phenotypic differences associated with DM-derived corneal fibroblasts and enable the development of targeted therapeutics to promote corneal integrity.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Substância Própria/metabolismo , Córnea , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047335

RESUMO

Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.


Assuntos
Exossomos , Exossomos/metabolismo , Saliva/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Olho
4.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457149

RESUMO

Salivary exosomes have demonstrated vast therapeutic and diagnostic potential in numerous diseases. This study pioneers previously unexplored roles of SE in the context of corneal wound healing by utilizing primary corneal stromal cells from healthy (HCFs), type I diabetes mellitus (T1DMs), type II DM (T2DMs), and keratoconus (HKCs) subjects. Purified, healthy human SEs carrying tetraspanins CD9+, CD63+, and CD81+ were utilized. Scratch and cell migration assays were performed after 0, 6, 12, 24, and 48 h following SE stimulation (5 and 25 µg/mL). Significantly slower wound closure was observed at 6 and 12 h in HCFs with 5 µg/mL SE and T1DMs with 5 and 25 µg/mL SE. All wounds were closed by 24-hour, post-wounding. HKCs, T1DMs, and T2DMs with 25µg/mL SE exhibited a significant upregulation of cleaved vimentin compared to controls. Thrombospondin 1 was significantly upregulated in HCFs, HKCs, and T2DMs with 25 µg/mL SE. Lastly, HKCs, T1DMs, and T2DMs exhibited a significant downregulation of fibronectin with 25 µg/mL SE. Whether SEs can be utilized to clinical settings in restoring corneal defects is unknown. This is the first-ever study exploring the role of SEs in corneal wound healing. While the sample size was small, results are highly novel and provide a strong foundation for future studies.


Assuntos
Lesões da Córnea , Exossomos , Movimento Celular , Córnea/metabolismo , Lesões da Córnea/metabolismo , Humanos , Células Estromais , Cicatrização
5.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055103

RESUMO

Keratoconus (KC) is a progressive corneal thinning disease that manifests in puberty and worsens during pregnancy. KC onset and progression are attributed to diverse factors that include: environmental, genetics, and hormonal imbalances; however, the pathobiology remains elusive. This study aims to determine the role of corneal stroma sex hormone receptors in KC and their interplay with estrone (E1) and estriol (E3) using our established 3D in vitro model. Healthy cornea stromal cells (HCFs) and KC cornea stromal cells (HKCs), both male and female, were stimulated with various concentrations of E1 and E3. Significant changes were observed between cell types, as well as between males and females in the sex hormone receptors tested; androgen receptor (AR), progesterone receptor (PR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERß) using Western blot analysis. E1 and E3 stimulations in HCF females showed AR, PR, and ERß were significantly upregulated compared to HCF males. In contrast, ERα and ERß had significantly higher expression in HKC's females than HKC's males. Our data suggest that the human cornea is a sex-dependent, hormone-responsive tissue that is significantly influenced by E1 and E3. Therefore, it is plausible that E1, E3, and sex hormone receptors are involved in the KC pathobiology, warranting further investigation.


Assuntos
Substância Própria/metabolismo , Estriol/metabolismo , Estrona/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Ceratocone/etiologia , Ceratocone/metabolismo , Receptores de Esteroides/metabolismo , Biomarcadores , Células Cultivadas , Suscetibilidade a Doenças , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Humanos , Ceratocone/patologia , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo
6.
Exp Eye Res ; 208: 108617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010603

RESUMO

Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARß/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARß/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARß/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.


Assuntos
Oftalmopatias/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Animais , Homeostase , Humanos , Ligantes
7.
Prog Retin Eye Res ; 88: 101016, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740824

RESUMO

"The Diseases of the Horny-coat of The Eye", known today as keratoconus, is a progressive, multifactorial, non-inflammatory ectatic corneal disorder that is characterized by steepening (bulging) and thinning of the cornea, irregular astigmatism, myopia, and scarring that can cause devastating vision loss. The significant socioeconomic impact of the disease is immeasurable, as patients with keratoconus can have difficulties securing certain jobs or even joining the military. Despite the introduction of corneal crosslinking and improvements in scleral contact lens designs, corneal transplants remain the main surgical intervention for treating keratoconus refractory to medical therapy and visual rehabilitation. To-date, the etiology and pathogenesis of keratoconus remains unclear. Research studies have increased exponentially over the years, highlighting the clinical significance and international interest in this disease. Hormonal imbalances have been linked to keratoconus, both clinically and experimentally, with both sexes affected. However, it is unclear how (molecular/cellular signaling) or when (age/disease stage(s)) those hormones affect the keratoconic cornea. Previous studies have categorized the human cornea as an extragonadal tissue, showing modulation of the gonadotropins, specifically luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Studies herein provide new data (both in vitro and in vivo) to further delineate the role of hormones/gonadotropins in the keratoconus pathobiology, and propose the existence of a new axis named the Hypothalamic-Pituitary-Adrenal-Corneal (HPAC) axis.


Assuntos
Ceratocone , Córnea , Feminino , Hormônios Esteroides Gonadais/uso terapêutico , Gonadotropinas/uso terapêutico , Hormônios/uso terapêutico , Humanos , Masculino
8.
Vet Med (Auckl) ; 10: 141-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815098

RESUMO

PURPOSE: This study evaluated the specificity of different avian secondary antibodies used in Western blot and dot-blot ELISA to detect avian bornavirus antibodies in bird plasma. METHODS: Plasma samples were collected from: two Blue and gold macaws, one positive and one negative for avian bornavirus by RT-PCR; a Cockatiel and a Monk parakeet prior to and following experimental infection; and, two Mallards, one positive and one negative for avian bornavirus by RT-PCR Samples were analyzed by Western blot and dot-blot ELISA that incorporated recombinant avian bornavirus nucleoprotein as the target analyte. Four species-specific anti-IgY secondary antibodies were used in the assays: goat anti-macaw IgY, goat anti-bird IgY, goat anti-duck IgY, and rabbit anti-chicken IgY. RESULTS: In the Western blot, anti-macaw IgY secondary antibody produced strong signals with Blue and gold macaw and Cockatiel positive plasma, but no signal with Mallard positive plasma. Anti-bird IgY secondary antibody produced strong signals with Blue and gold macaw, Cockatiel, and Mallard positive plasma. Anti-duck and anti-chicken IgY secondary antibody produced a strong and moderate signal, respectively, only with Mallard positive plasma. In the dot-blot ELISA, there was a distinct and significant difference (P<0.05) in the signal intensity between the different secondary antibodies within a bird species. Anti-macaw IgY secondary antibody produced significantly (P<0.05) stronger signals than the other secondary antibodies in Blue and gold macaw, Cockatiel, and Monk parakeet positive plasma, while anti-duck IgY secondary antibody produced significantly (P<0.05) stronger signals than the other secondary antibodies in Mallard positive plasma. CONCLUSION: In testing psittacines with immunoassays, and especially in assays that incorporate short incubation reaction times such as a dot-blot ELISA, species-specific anti-IgY secondary antibodies provided more accurate results.

9.
Vet Med (Auckl) ; 10: 185-195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819861

RESUMO

PURPOSE: Parrot bornavirus is the etiological agent of Parrot bornavirus syndrome, also referred to and comprising proventricular dilatation disease or PDD, macaw wasting disease, enteric ganglioneuritis and encephalitis, and avian ganglioneuritis. It has been suggested that nonsteroidal anti-inflammatory drugs may be able to ameliorate this disease. Therefore, this study investigated the effects of two commonly used nonsteroidal anti-inflammatory drugs, celecoxib and meloxicam, on cockatiels experimentally inoculated with Parrot bornavirus-2 (PaBV-2). MATERIALS AND METHODS: Twenty-seven cockatiels were randomized into 3 groups of 9 birds, matched with respect to historical PaBV shedding, weight, and sex. The cockatiels were inoculated with cell culture-derived PaBV-2 by the intranasal and intramuscular routes. Beginning at 23 days post-inoculation, birds in each group received oral treatment once daily with placebo, meloxicam (1.0 mg/kg), or celecoxib (10.0 mg/kg). RESULTS: Within 33-79 days post-inoculation, 2 birds died and 6 birds were euthanized based on neurological or gastrointestinal signs consistent with Parrot bornavirus syndrome: 2 birds were euthanized in the placebo group, 1 bird died and 1 bird was euthanized in the meloxicam-treated group, and 1 bird died and 3 birds were euthanized in the celecoxib-treated group. Of these 8 birds, black intestinal contents were found upon necropsy in 2 birds of the meloxicam-treated group and 2 birds of the celecoxib-treated group. At day 173 (±2) post-inoculation, the remaining 19 birds were euthanized. Necropsy and histopathology showed lesions characteristic of Parrot bornavirus syndrome in 23 cockatiels. Histopathologic lesions were present in birds of all 3 groups. There was no statistical difference between the groups nor was there a statistical difference among the 3 treatment groups in the detection of PaBV RNA and PaBV nucleoprotein using RT-PCR and immunohistochemistry, respectively. CONCLUSION: Meloxicam and celecoxib treatments do not appear to alter the clinical presentation, viral shedding, gross lesions, histopathology, or viral distribution. Treatment with NSAIDs may cause gastrointestinal toxicity in cockatiels experimentally inoculated with PaBV-2.

10.
PLoS One ; 10(7): e0134080, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222794

RESUMO

Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 µg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture.


Assuntos
Antivirais/farmacologia , Bornaviridae/efeitos dos fármacos , Papagaios/virologia , Ribavirina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Doenças das Aves/dietoterapia , Doenças das Aves/virologia , Bornaviridae/genética , Bornaviridae/metabolismo , Técnicas de Cultura de Células , Replicação do DNA/efeitos dos fármacos , Patos/virologia , Fibroblastos/virologia , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Viral/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA