Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808554

RESUMO

This paper presents and implements a novel remote attestation method to ensure the integrity of a device applicable to decentralized infrastructures, such as those found in common edge computing scenarios. Edge computing can be considered as a framework where multiple unsupervised devices communicate with each other with lack of hierarchy, requesting and offering services without a central server to orchestrate them. Because of these characteristics, there are many security threats, and detecting attacks is essential. Many remote attestation systems have been developed to alleviate this problem, but none of them can satisfy the requirements of edge computing: accepting dynamic enrollment and removal of devices to the system, respecting the interrupted activity of devices, and last but not least, providing a decentralized architecture for not trusting in just one Verifier. This security flaw has a negative impact on the development and implementation of edge computing-based technologies because of the impossibility of secure implementation. In this work, we propose a remote attestation system that, through using a Trusted Platform Module (TPM), enables the dynamic enrollment and an efficient and decentralized attestation. We demonstrate and evaluate our work in two use cases, attaining acceptance of intermittent activity by IoT devices, deletion of the dependency of centralized verifiers, and the probation of continuous integrity between unknown devices just by one signature verification.


Assuntos
Tecnologia , Confiança
2.
Sensors (Basel) ; 21(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502814

RESUMO

This work studies the feasibility of a novel two-step algorithm for infrastructure and object positioning, using pairwise distances. The proposal is based on the optimization algorithms, Scaling-by-Majorizing-a-Complicated-Function and the Limited-Memory-Broyden-Fletcher-Goldfarb-Shannon. A qualitative evaluation of these algorithms is performed for 3D positioning. As the final stage, smoothing filtering techniques are applied to estimate the trajectory, from the previously obtained positions. This approach can also be used as a synthetic gesture data generator framework. This framework is independent from the hardware and can be used to simulate the estimation of trajectories from noisy distances gathered with a large range of sensors by modifying the noise properties of the initial distances. The framework is validated, using a system of ultrasound transceivers. The results show this framework to be an efficient and simple positioning and filtering approach, accurately reconstructing the real path followed by the mobile object while maintaining low latency. Furthermore, these capabilities can be exploited by using the proposed algorithms for synthetic data generation, as demonstrated in this work, where synthetic ultrasound gesture data are generated.


Assuntos
Gestos , Análise de Escalonamento Multidimensional , Algoritmos , Computadores
3.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138001

RESUMO

Although the number of Internet of Things devices increases every year, efforts to decrease hardware energy demands and to improve efficiencies of the energy-harvesting stages have reached an ultra-low power level. However, no current standard of wireless communication protocol (WCP) can fully address those scenarios. Our focus in this paper is to introduce treNch, a novel WCP implementing the cross-layer principle to use the power input for adapting its operation in a dynamic manner that goes from pure best-effort to nearly real time. Together with the energy-management algorithm, it operates with asynchronous transmissions, synchronous and optional receptions, short frame sizes and a light architecture that gives control to the nodes. These features make treNch an optimal option for wireless sensor networks with ultra-low power demands and severe energy fluctuations. We demonstrate through a comparison with different modes of Bluetooth Low Energy (BLE) a decrease of the power consumption in 1 to 2 orders of magnitude for different scenarios at equal quality of service. Moreover, we propose some security optimizations, such as shorter over-the-air counters, to reduce the packet overhead without decreasing the security level. Finally, we discuss other features aside of the energy needs, such as latency, reliability or topology, brought again against BLE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA