Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(7): 1842-1845, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221780

RESUMO

Post-compression methods for ultrafast laser pulses typically face challenging limitations, including saturation effects and temporal pulse breakup, when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling, for the first time to the best of our knowledge, single-stage post-compression of 150 fs pulses and up to 250 µJ pulse energy from an ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route toward single-stage post-compression of Yb lasers into the few-cycle regime.

2.
Opt Lett ; 48(18): 4753-4756, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707894

RESUMO

Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route toward terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of ∼0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at multi-picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, prospectively opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine, and attosecond science.

3.
Opt Express ; 29(10): 14314-14325, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985154

RESUMO

A pulse-shaper-based method for spectral phase measurement and compression with milliradian precision is proposed and tested experimentally. Measurements of chirp and third-order dispersion are performed and compared to theoretical predictions. The single-digit milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.

4.
Opt Lett ; 46(18): 4686-4689, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525082

RESUMO

Nonlinear pulse post-compression represents an efficient method for ultrashort, high-quality laser pulse production. The temporal pulse quality is, however, limited by amplitude and phase modulations intrinsic to post-compression. We here characterize in frequency and time domain with high dynamic range individual post-compressed pulses within laser bursts comprising 100-kHz-rate pulse trains. We spectrally broaden 730 fs, 3.2 mJ pulses from a Yb:YAG laser in a gas-filled multi-pass cell and post-compress them to 56 fs. The pulses exhibit a nearly constant energy content of 78% in the main peak over the burst plateau, which is close to the theoretical limit. Our results demonstrate attractive pulse characteristics, making multi-pass post-compressed lasers very applicable for pump-probe spectroscopy at, e.g., free-electron lasers or as efficient drivers for secondary frequency conversion stages.

5.
Opt Lett ; 45(21): 5998-6001, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137053

RESUMO

A table-top midwave-infrared optical parametric chirped pulse amplification (OPCPA) system generates few-cycle pulses with multi-10 GW peak power at a 1 kHz repetition rate. The all-optically synchronized system utilizes ZnGeP2 nonlinear crystals and a highly stable 2 µm picosecond pump laser based on Ho:YLiF4. An excellent energy extraction is achieved by reusing the pump pulse after the third parametric power amplification stage, resulting in 3.4 mJ idler pulses at a center wavelength of 4.9 µm. Pulses as short as 89.4 fs are achieved, close to only five optical cycles. Taking into account the pulse energy, a record high peak power of 33 GW for high-energy mid-IR OPCPAs beyond 4 µm wavelength is demonstrated.

6.
Opt Lett ; 44(12): 3142-3145, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199401

RESUMO

When confronted with a pulse train whose intensity and/or phase versus time varies from pulse to pulse, multi-shot pulse-measurement techniques usually exhibit a coherent artifact (CA), which substantially complicates the interpretation of the measurement. In frequency-resolved optical gating (FROG), such instabilities are indicated by discrepancies between the measured and retrieved FROG traces. Here we consider the simultaneous retrieval of the CA and the average pulse characteristics from a single FROG trace in the limit of significant fluctuations. We use a modified generalized projections algorithm. Two electric fields are simultaneously retrieved, while the data constraint is updated as the algorithm progresses using only the assumption that the trace can be modeled as the sum of two spectrograms, one corresponding to the pulse and the other corresponding to the CA. An additional flat-spectral-phase constraint is added to one of the fields to ensure that it only reacts to the presence of the CA. Using this novel retrieval method, the complete retrieval of the characteristics of pulses in an unstable train from FROG traces is demonstrated.

7.
Opt Lett ; 42(11): 2185-2188, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569877

RESUMO

A novel pulse characterization method is presented, favorably combining interferometric frequency-resolved optical gating (FROG) and time-domain ptychography. This new variant is named ptychographic-interferometric frequency-resolved optical gating (πFROG). The measurement device is simple, bearing similarity to standard second-harmonic FROG, yet with a collinear beam geometry and an added bandpass filter in one of the correlator arms. The collinear beam geometry allows tight focusing and circumvents possible geometrical distortion effects of noncollinear methods, making πFROG especially suitable for the characterization of unamplified few-cycle pulses. Moreover, the direction-of-time ambiguity afflicting most second-order FROG variants is eliminated. Possible group delay dispersion of pulses leads to a characteristic tilt in the πFROG traces, allowing the detection of uncompensated dispersion without a retrieval. Using nanojoule, three-cycle pulses at 800 nm, the πFROG method is tested, and the results are compared with spectral phase interferometry for direct electric field reconstruction measurements. Measured pulse durations agree within a fraction of a femtosecond. As a further test, the πFROG measurements are repeated with added group delay dispersion, and found to accurately reproduce the dispersion computed with Sellmeier equations.

8.
Rev Sci Instrum ; 88(10): 103102, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092467

RESUMO

A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA