RESUMO
The aim of this study is to determine the role of geomorphological factors in land use and plant cover organization. For this purpose, the relationship between geomorphological factors such as geomorphological unit, elevation, slope, aspect, and curvature with land use and plant cover was analyzed using GIS (Geographical Information Systems) techniques and statistical methods (zonal analysis, correlation analysis, regression analysis). Using zonal analysis, the boundaries of both land use patterns and plant species are clearly drawn according to geomorphological factors. Using correlation analysis, the direction and intensity of the relationship between each geomorphological factor with land use patterns and plant species were determined. Finally, regression analysis method was used to determine the impact rate of geomorphological factors on land use patterns and plant cover. Thus, the effects of geomorphological factors on the distribution of both land use patterns and the each plant species were explained in detail. When the results of all three analyses are evaluated in general, the elevation is very strong, the slope strong, the aspect medium, the geomorphological unit weak, and the curvature has a very weak effect on the distribution of land use patterns and the plant species in the research area. The data obtained from the study will contribute to the planning and implementation of activities such as forest, agriculture, land use, water management to be carried out by local administrations and decision-makers. In addition, it will form a scientific basis for the sustainability of forest existence in harmony with the ecological conditions of Göksun Plain and its surroundings.
Assuntos
Monitoramento Ambiental , Plantas , Agricultura , Monitoramento Ambiental/métodos , Sistemas de Informação GeográficaRESUMO
In this study, ambient air and olive tree components (leaf and branch) were simultaneously collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) to investigate their levels and accumulations, temporal variations, possible sources, air-plant partitioning and cancer risks for 12 months. During the sampling period, total of 14 PAH (∑14PAH) concentrations measured in the olive leaves (dissolved and particle phase) and braches (1- and 2-year-old) were 593 ± 472, 81 ± 67, 558 ± 273 and 316 ± 213 ng/g dry weight (DW), respectively. Similarly, the average ∑14PAH concentrations measured in the ambient air was found to be 15 ± 16 ng/m3. Generally, 4-, 5- and 6- ring PAHs were the dominant groups for all tree components, while 2- and 3-ring PAHs were predominant in the air samples. Ring distributions and molecular diagnosis ratios were employed to determine PAH sources in the sampling site. Petroleum and combustion-related sources were found to be important. The Pearson correlation coefficient was allowed to figure out the affinity between PAH levels in the sampling materials and meteorological factors. Temperature and mixing layer height were found to be effective factors on the concentrations. Atmospheric PAH levels were also predicted to employ a bark-air exchange model for determining the PAH movement direction. The predicted/measured ratios were above 1.0. This was probably due to utilizing the branch values rather than bark values in the model. Finally, the risk of cancer has been evaluated. The calculated cancer risks via inhalation were at low levels for adults and children.
Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Poluentes Atmosféricos/análise , Criança , Pré-Escolar , Monitoramento Ambiental , Humanos , Lactente , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano , ÁrvoresRESUMO
This study investigated the concentration of polycyclic aromatic hydrocarbons (PAHs) using particle and gas-phase air samples collected in the Ovaakca and Cumalikizik region of Bursa, between May and September 2017. The concentration of Σ16PAH measured in the gas phase, for Ovaakca and Cumalikizik, were 5.32 ± 1.98 and 4.91 ± 3.41 ng m-3, respectively; and for the particle phase, 0.81 ± 0.56 and 1.84 ± 1.82 ng m-3, respectively. The coefficient of gas-particle partitioning was related to the excessive cooled vapor pressure. The determined slope values were - 0.319 (Ovaakca) and - 0.505 (Cumalikizik), which showed the strong effect of organic carbon absorption and the distance to the equilibrium. These experimental values were compared with the results obtained using the octanol/air and Dual partition models, and Dual partition model showed more accurate values than the octanol/air model. The relations between temperature and concentration in the gas phase of PAHs were evaluated using the Clausius-Clapeyron equation. The results indicated the influence of long-range transport of the atmospheric concentrations of PAHs at the regions. Diagnostic ratio analysis showed that biomass burning, coal combustion, and vehicular emissions contributed greatly to the atmospheric PAHs in the regions. In principal component analysis analysis, wood-burning was found to be the predominant parameter in addition to PAH sources determined with diagnostic ratios. In this study, the lifetime risk of lung cancer was calculated according to the mean and max BaP-TEQ values. When calculated according to the average values, while both regions were acceptable risk levels (Ovaakca: 2.6 × 10-6 and Cumalikizik: 8.6 × 10-6), at low-risk level was determined according to max BaP-TEQ values only in the Cumalikizik region (1.93 × 10-5).
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Humanos , Análise de Componente Principal , Estações do Ano , Temperatura , TurquiaRESUMO
Pine trees are used as biomonitoring agents to evaluate atmospheric polycyclic aromatic hydrocarbons (PAHs). Due to industrialization, urban construction, and rapid population growth, the city of Bursa is experiencing air pollution. In this study, PAHs were measured in pine tree branches and needles at a wastewater treatment plant site, an industrial site, and semirural site in Bursa for 12 months. The concentrations fluctuated depending on the characteristics of the areas. The lowest concentration value was measured in the semirural site while the highest value was determined in the wastewater treatment plant site. The PAH concentrations in pine needles ranged from 24 to 2565 ng/g dry weight (DW) and in pine branches from 163 to 2871 ng/g DW for 16 PAHs. Naphthalene, phenanthrene, fluorene, and fluoranthene were determined as dominant species in both tree components. Diagnostic ratios, ring profile, principal component analysis, the coefficient of divergence, and the Pearson correlation coefficient methods were used in the definition of sources of PAHs in the sampling sites, although all source identification methods have advantages and disadvantages. According to the results, the PAHs mainly originated from biomass and coal burning, traffic, and mixed sources. It also was concluded that three sampling sites showed higher PAH concentrations during winter, and the main PAH sources were similar.
Assuntos
Poluição do Ar/análise , Monitoramento Biológico/métodos , Pinus/química , Folhas de Planta/química , Caules de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Cidades , Estações do Ano , TurquiaRESUMO
It is known that some persistent organic pollutants (POPs) are used worldwide, and these pollutants are dangerous for human health. However, there are still countries where measurements of these pollutants have not been adequately measured. Although many studies have been published for determining the concentrations of POPs in Turkey, there are limited studies in Latin American countries like Peru. For this reason, it is essential both to conduct a study in Peru and to compare the study with another country. This study is aimed at determining the atmospheric POPs such as polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP), and polychlorinated biphenyl (PCB) concentrations using passive air samplers in Yurimaguas (Peru) and Bursa (Turkey). Molecular diagnosis ratios and ring distribution methods were used to determine the sources of PAHs. According to these methods, coal and biomass combustions were among the primary sources of PAHs in Peru, while petrogenic and petroleum were the primary sources of PAHs in Turkey. Then, α-HCH/γ-HCH and ß-/(α+γ)-HCH ratios were used to determine the sources of OCPs. According to the α-HCH/γ-HCH ratios, the primary sources of OCPs in both countries were lindane. Similarly, according to ß-/(α+γ)-HCH ratios, the HCHs have been historically used in Peru while they were recently utilized in Turkey. Finally, homologous group distributions were used to determine the sources of PCBs. Similar distributions of homologous groups were observed in the sampling sites in both countries. Also, the homologous group distributions obtained have been determined that industrial activities could be effective in the sampling areas in both countries. When the cancer risks that could occur via inhalation were evaluated, no significant cancer risk has been determined in both countries.
Assuntos
Poluentes Atmosféricos/análise , Poluentes Ambientais/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Humanos , Peru , Medição de Risco , TurquiaRESUMO
Air samples were collected at a semi-rural area between February 2013 and February 2014 to determine the concentrations and gas/particle partitionings of polycyclic aromatic hydrocarbons (PAHs). The sampling was done with a high volume air sampler to cover four seasons and 40 samples were taken. Each sample period was about 24 h. The gas-particle partition coefficients (Kp) of PAHs were calculated and correlated with their subcooled liquid vapor pressures ( PL0 ). The determined slopes (mL) varying from -0.59 to -0.28 were far from the theoretical value (-1) due to the absorption, the dominant mechanism. Experimentally determined Kp values were compared with the results obtained using the octanol-air and soot-octanol partitioning models. An octanol-based absorptive partitioning model resulted in a better prediction than the soot-octanol based partitioning model. The total (gas + particle) PAH concentrations changed between 6 and 798 ng m-3 with an average of 205 ± 236 ng m-3. According to Clausius-Clapeyron equation, the local PAH sources were effective. The diagnostic ratios indicated that coal and wood-burning, and traffic emissions were the dominant PAH sources. Dry deposition fluxes for gas and particle phase were also estimated using documented dry deposition velocities and mass transfer coefficients in the literature and concentrations measured in this study.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases/análise , Modelos Teóricos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , TurquiaRESUMO
Sampling of 15 PAHs by the use of both passive air sampler developed (D-PAS) in our research group and PAS (C-PAS) having widespread use in the literature was conducted to compare the performances of the samplers. Sampling was carried out for 1-year period (February 2013-February 2014), in different sampling periods by employing D-PAS and C-PAS. D-PAS and C-PAS were run in parallel for 10, 20, 30, 40 and 60 days. Sampling rates were calculated for both PASs by the use of concentration values obtained from a high-volume air sampler (HVAS). It was determined that calculated sampling values are different from each other by definition of design of C-PAS and D-PAS and difference in environment as velocity of wind and temperature are having different effects upon sampling rates. Collected σ15PAHs amounts of 10-day periods in spring, summer, autumn and winter were obtained as 576 ± 333, 209 ± 29, 2402 ± 910 and 664 ± 246 ng for D-PAS and 1070 ± 522, 318 ± 292, 6062 ± 1501 and 6089 ± 4018 ng for C-PAS, respectively. In addition, according to seasons, when collected PAHs in two different samplers were considered, similar results were obtained for the summer time in which no combustion takes place with the aim of domestic heating, while there were differences determined for the seasons with combustion in need of domestic heating. Gas-phase σ15PAHs' concentrations were reported depending on seasons in the spring, summer, autumn and winter sequences as 46 ± 32, 9 ± 3, 367 ± 207 and 127 ± 93 ng m-3 for HVAS, respectively.
Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Desenho de Equipamento , Limite de Detecção , Estações do Ano , Temperatura , Turquia , VentoRESUMO
In this study, we collected Polychlorinated biphenyls (PCBs) using passive air samplers (PASs), between February 4, 2013 and February 2, 2014, with the sampling periods ranging from 10 to 60 days. The samples were collected with PASs that contained polyurethane foam (PUF). With these samples, 87 PCB congeners were analyzed. Sampling coefficient (R) values for the four seasons were calculated using both the high volume air sampler (HVAS) and PAS samples collected with the same time interval. The average of the annual concentrations of 87 PCB congeners, calculated using the R values specific to this study, was 234 ± 175 pg/m3. PCB congeners with 3- and 4- chlorines were dominant. The samples were collected at the same time interval but at different times to represent accumulation in the PASs. The linear regression coefficients (r) of the PCB mass accumulated in PASs against time ranged from 0.89 and 0.97 indicating that accumulation was linear. Moreover, the concentrations of the PCB congeners were statistically correlated with atmospheric conditions.
Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Modelos Lineares , Poliuretanos/química , Estações do AnoRESUMO
The passive air sampler (PAS) is a common and useful tool for the sampling of semivolatile organic compounds in the ambient air. In a study performed in a semirural area of Bursa, sampling of polycyclic aromatic hydrocarbons (PAHs), was completed between February 4, 2013, and February 3, 2014, during 10-, 20-, 30-, 40- and 60 day periods for 1 year. To determine polycyclic aromatic compounds (PAH) concentrations, 3 PASs and 1 high-volume air sampler were run simultaneously, and sampling rates (R [m(3)/d]) were calculated seasonally and according to the ring numbers of the PAHs. R values varied from 0.66 to 22.41 m(3)/d. The relationship of these values with meteorological conditions was examined statistically, and the regressions performed were found to be consistent. This study identified 15 PAH compounds [Formula: see text]. Concentration values of 10 day samples fluctuated from 6.4 to 1100 ng/m(3). Seasonal averages of the concentrations of ∑15PAHs were detected to be 141 ± 72.5 ng/m(3) for winter, 74 ± 59 ng/m(3) for spring, 7 ± 0.6 ng/m(3) for summer and 840 ± 170 ng/m(3) for autumn. In this study, the toxicity equivalents of seasonal PAH concentrations obtained were determined to be 0.5, 0.3, 0.1, and 1.8 ng/m(3) in winter, spring, summer and fall, respectively. The type posing a cancer risk has been identified as BaA.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/instrumentaçãoRESUMO
Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.
Assuntos
Lisencefalia , Transtornos do Neurodesenvolvimento , Humanos , Caspase 2/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Alelos , Transtornos do Neurodesenvolvimento/genética , Códon sem Sentido , Fenótipo , Cisteína Endopeptidases/genéticaRESUMO
Background: Pediatric patients with undiagnosed conditions, particularly those suspected of having Mendelian genetic disorders, pose a significant challenge in healthcare. This study investigates the diagnostic yield of whole-genome sequencing (WGS) in a pediatric cohort with diverse phenotypes, particularly focusing on the role of clinical expertise in interpreting WGS results. Methods: A retrospective cohort study was conducted at Acibadem University's Maslak Hospital in Istanbul, Turkey, involving pediatric patients (0-18 years) who underwent diagnostic WGS testing. Clinical assessments, family histories, and previous laboratory and imaging studies were analyzed. Variants were classified and interpreted in conjunction with clinical findings. Results: The cohort comprised 172 pediatric patients, aged 0-5 years (62.8%). International patients (28.5%) were from 20 different countries. WGS was used as a first-tier approach in 61.6% of patients. The diagnostic yield of WGS reached 61.0%, enhanced by reclassification of variants of uncertain significance (VUS) through reverse phenotyping by an experienced clinical geneticist. Consanguinity was 18.6% of the overall cohort. Dual diagnoses were carried out for 8.5% of solved patients. Discussion: Our study particularly advocates for the selection of WGS as a first-tier testing approach in infants and children with rare diseases, who were under 5 years of age, thereby potentially shortening the duration of the diagnostic odyssey. The results also emphasize the critical role of a single clinical geneticist's expertise in deep phenotyping and reverse phenotyping, which contributed significantly to the high diagnostic yield.
RESUMO
Introduction: Rare and ultra-rare genetic conditions significantly contribute to infant morbidity and mortality, often presenting with atypical features and genetic heterogeneity that complicate management. Rapid genome sequencing (RGS) offers a timely and cost-effective approach to diagnosis, aiding in early clinical management and reducing unnecessary interventions. This pilot study represents the inaugural use of next-generation sequencing (NGS) as a diagnostic instrument for critically ill neonatal and pediatric ICU patients in a Turkish hospital setting. Methods: Ten infants were enrolled based on predefined inclusion criteria, and trio RGS was performed. The mean age of the participants was 124â days, with congenital abnormalities being the most common indication for testing. Three patients had consanguineous parents. The mean turnaround time from enrollment to delivery of results was 169â h, with a diagnostic yield of 50%. Results: Three patients received a definitive molecular diagnosis, impacting their clinical management. Two patients benefited from the exclusion of Mendelian conditions, leading to alternative diagnoses. Discussion: This study demonstrates the feasibility and results of RGS in Turkish hospital settings, emphasizing the importance of timely genetic diagnosis in reducing the diagnostic odyssey for families and improving patient care. Further research is needed to evaluate the cost-effectiveness and applicability of RGS in the Turkish healthcare system for children with diseases of uncertain etiology.
RESUMO
In this study, ambient air, surface water and sediment samples were simultaneously collected and analyzed for PCBs to investigate their levels, spatial variations and exchanges between these three compartments at different sampling sites for 12 months in Bursa, Türkiye. During the sampling period, a total of 41 PCB concentrations were determined in the ambient air, surface water (dissolved and particle phase) and sediment. Thus, 945.9 ± 491.6 pg/m3 (average ± STD), 53.8 ± 54.7 ng/L, 92.8 ± 59.3 ng/L and 71.4 ± 38.7 ng/g, respectively. The highest concentrations of PCBs in the ambient air and in water particulate phase were measured at the industrial/agricultural sampling site (1308.6 ± 252.1 pg/m3 and 168.7 ± 21.2 ng/L, respectively), â¼ 4-10 times higher than background sites; while the highest concentrations in the sediment and dissolved phase were measured at the urban/agricultural sampling sites (163.8 ± 27.0 ng/L and 145.7 ± 15.3 ng/g, respectively), â¼ 5-20 times higher than background sites. PCB transitions between ambient air-surface water (fA/fW) and surface water-sediment (fW/fS) were investigated by fugacity ratio calculations. According to the fugacity ratios obtained, volatilization from the surface water to the ambient air was observed at all sampling sites (98.7 % of fA/fW ratios are <1.0). Additionally, it has been determined that there is a transport from the surface water to the sediment (100.0 % of fW/fS ratios are higher than 1.0). The flux values in ambient air-surface water and surface water-sediment environments ranged from -1.2 to 1770.6 pg/m2-day and from -225.9 to 0.001 pg/m2-day, respectively. The highest flux values were measured for PCBs with low chlorine content (Mono-, Di-Cl PCBs), while the lowest flux values were measured for the high chlorine content PCBs (Octa-, Nona- and Deca-Cl PCBs). As it was determined in this study that surface waters contaminated by PCBs have the potential to pollute both air and sediments, it will be important to take measures to protect surface waters.
RESUMO
Introduction: Hereditary forms of intellectual disability (ID), an estimated prevalence ranging between 1% and 3% in the general population, are among the most important problems in health care. Especially, autosomal-recessive ID has a very heterogeneous molecular basis and a lack of specific phenotypic features. Methods: Here, we report on two unrelated patients with autosomal-recessive ID, microcephaly, and autistic features and review the patients with TRAPPC9-related ID. Whole-exome sequencing and array CGH were performed for molecular diagnosis of the patients. Results: The first case has a microdeletion on chromosome 8q24.23-q24.3 region which is 1.7 Mb in length and includes the last 5 exons of TRAPPC9, and c.3435delG [p.Thr1146Profs*8] deletion. The second case has a homozygous missense c.623A>C (p.His208Pro) variant in TRAPPC9 which is detected by means of whole-exome sequencing study of the proband. We also reviewed the clinical findings and mutation spectrum of all patients with TRAPPC9-related ID reported so far. Conclusions: Our study showed that the most consistent clinical findings for TRAPPC9-related ID are ID, microcephaly, and some structural brain MRI abnormalities. The mutations in the TRAPPC9 are scattered throughout all exons of TRAPPC9 indicating there is no hot spot mutation region in this gene.
RESUMO
In this study, the concentration of ambient persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were measured for 12 months in urban and semi-urban areas using a passive air sampler. During the sampling period, a total of 14 PAH (∑14PAH) concentrations measured in urban and semi-urban areas were found to be 54.4 ± 22.6 ng/m3 and 51.7 ± 34.3 ng/m3, respectively. Molecular diagnostic ratios (MDRs) were used to determine PAH sources. According to the MDR values, combustion sources were the most important PAH sources in both sampling areas. However, since the urban area is close to the industrial zone, the combustion sources occurred at high temperatures (> 800 °C), while the sources in the semi-urban area generally consisted of petrogenic fuel combustion. ∑50PCB concentrations measured in the urban and semi-urban areas were found to be 522.5 ± 196.9 pg/m3 and 439.5 ± 166.6 pg/m3, respectively. Homologous group distributions were used to determine the source of PCBs. According to the homologous group distributions, tri-, tetra-, and penta-chlorinated PCBs were dominant in both sampling areas. ∑10OCP concentrations measured in urban and semi-urban areas were found as 242.5 ± 104.6 pg/m3 and 275.9 ± 130.9 pg/m3, respectively. Also, α-HCH/γ-HCH and ß-/(α + γ)-HCH ratios were used to determine the source of OCPs. Lindane was the predominant OCP in both sampling areas.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Poluentes Orgânicos Persistentes , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , TurquiaRESUMO
Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) accumulate in the food chain due to their physical and chemical properties and adversely affect human health. For this reason, this study aimed to determine the PAH and PCB concentration levels in pollen and honey samples in urban and semi-urban areas and to evaluate the risk of cancer that may occur by ingestion in Bursa, Turkey. The average total concentrations of 14 PAH (∑14PAH) compounds in pollen and honey samples were found to be 304.3 ± 192.3 ng/g (average ± standard deviation) and 650.2 ± 118.1 ng/g for the urban area, and 329.6 ± 160.6 ng/g and 464.3 ± 66.4 ng/g for the semi-urban area, respectively. Similarly, ∑14PCB concentrations in pollen and honey samples were found to be 8.7 ± 3.6 ng/g and 13.0 ± 4.8 ng/g for the urban area and 7.7 ± 2.2 ng/g and 17.4 ± 4.0 ng/g for the semi-urban area, respectively. It was determined that the pollen and honey samples in both sampling areas were affected by local PCB sources. The Pearson correlation coefficient (PCC) method determined the relationship between pollen and honey samples. According to the PCC values obtained, it was observed that pollen and honey in both sampling regions exhibited a significant relationship with each other. Finally, while there was no cancer risk for PCBs due to ingestion of honey and pollen in both sampling areas, acceptable cancer risk has been calculated for PAHs.
Assuntos
Mel , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental/métodos , Humanos , Poluentes Orgânicos Persistentes , Pólen/química , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel. KCNB1 mutations are known to cause global developmental delay, behavioral disorders, and various epilepsies. Most variants occur de novo and are rarely inherited. Here, we report a 14-year-old male patient who was admitted to our clinic with seizures, developmental delay history, and intellectual disability. Brain magnetic resonance image (MRI) was normal and electroencephalogram (EEG) showed spike and sharp-wave complexes emerging in the left hemisphere parietooccipital areas, which were paroxysmally generalized. We performed whole exome sequence analysis (WES) and identified a heterozygous frameshift mutation c.522delA in exon 1 of KCNB1 (NM_004975.4) predicting a premature stop codon p.Lys174Asnfs*20 in the proband. Sanger sequencing confirmed the heterozygous c.522delA mutation in the proband and his mother who also had epilepsy and learning difficulties. His 45 year old mother had used antiepileptic drugs for 9 years after a seizure episode at 12 years old. Also, his mother's uncle's son is nonverbal and has developmental delay and epilepsy. Our study shows that frameshift mutation cytoplasmic domain of KCNB1 gene can cause intrafamilial phenotypic variability and relatively mild clinical findings in these patients.
RESUMO
g-In this study, the presence of OCP residues in the honeybee, pollen and honey samples in urban and semi-urban areas were investigated. A total of 10 OCP concentrations (∑10OCP) in honeybee samples were 39.14 ± 11.06 ng g-1 for the urban area and 39.93 ± 7.09 ng g-1 for the semi-urban area, respectively. Similarly, ∑10OCP concentrations in pollen and honey samples were estimated to be 21.72 ± 4.43 ng g-1 and 41.83 ± 1.61 ng g-1 for the urban area, 19.77 ± 2.86 ng g-1 and 39.23 ± 3.90 ng g-1 for the semi-urban area, respectively. Also, it was concluded that the existence of OCP residues in both sampling areas was due to the recent use of pesticides. Finally, the cancer risk caused by the consumption of pollen and honey samples was evaluated, and it was found that there was no cancer risk in both sampling areas.
Assuntos
Mel , Hidrocarbonetos Clorados , Praguicidas , Animais , Abelhas , Monitoramento Ambiental , Contaminação de Alimentos , Mel/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Praguicidas/toxicidade , Pólen/química , TurquiaRESUMO
Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus and has been affecting the world since the end of 2019. The disease led to significant mortality and morbidity in Turkey, since the first case was reported on March 11th, 2020. Studies suggest a positive association between air pollution and SARS-CoV-2 infection. The aim of the present study was to investigate the role of ambient particulate matters (PM), as potential carriers for SARS-CoV-2. Ambient PM samples in various size ranges were collected from 13 sites including urban and urban-background locations and hospital gardens in 10 cities across Turkey between 13th of May and 14th of June 2020 to investigate the possible presence of SARS-CoV-2 RNA on ambient PM. A total of 203 daily samples (TSP, n = 80; PM2.5, n = 33; PM2.5-10, n = 23; PM10µm, n = 19; and 6 size segregated PM, n = 48) were collected using various samplers. The N1 gene and RdRP gene expressions were analyzed for the presence of SARS-CoV-2, as suggested by the Centers for Disease Control and Prevention (CDC). According to real time (RT)-PCR and three-dimensional (3D) digital (d) PCR analysis, dual RdRP and N1 gene positivity were detected in 20 (9.8%) samples. Ambient PM-bound SARS-CoV-2 was analyzed quantitatively and the air concentrations of the virus ranged from 0.1 copies/m3 to 23 copies/m3. The highest percentages of virus detection on PM samples were from hospital gardens in Tekirdag, Zonguldak, and Istanbul, especially in PM2.5 mode. Findings of this study have suggested that SARS-CoV-2 may be transported by ambient particles, especially at sites close to the infection hot-spots. However, whether this has an impact on the spread of the virus infection remains to be determined.
Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Cidades , Humanos , Material Particulado/análise , RNA Viral , SARS-CoV-2 , Turquia/epidemiologiaRESUMO
In recent years, honeybees and bee products such as pollen and honey have been used as bioindicators for monitoring environmental pollution. Unfortunately, there are few studies about polychlorinated biphenyl (PCB) concentrations in honeybees and bee products from Turkey. Honeybee and pollen samples were taken between May and September 2017, and honey samples were taken between July and September 2017 at urban and semi-urban areas in Bursa (Turkey). PCB concentrations measured by gas chromatography-microelectron capture detector (GC-µECD) were found to be 135.46 ± 6.53, 81.47 ± 23.52, and 106.35 ± 21.60 ng g-1 dry weight (dw) for honeybee, pollen, and honey samples in the urban area, respectively; and 126.35 ± 26.54, 67.57 ± 27.34, and 118.88 ± 55.28 ng g-1 dw for honeybee, pollen, and honey samples in the semi-urban area, respectively. Pearson correlation was made between meteorological parameters and pollutant concentrations. According to the correlation results, a significant relationship was found between the pollen and honey results and the total cloudiness and temperature in the semi-urban area. The coefficient of divergence (COD) and Pearson correlation coefficient (PCC) methods were applied to determine the similarities and differences between the pollutant concentrations and sources of the two areas and the temporal variation. According to these two methods, PCB concentrations and emission sources in honeybee and pollen samples in urban and semi-urban areas were generally different in May and June, and similar in August and September.