Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Anal Chem ; 94(31): 10949-10958, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877130

RESUMO

PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a µs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.


Assuntos
COVID-19 , Agregados Proteicos , Humanos , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , SARS-CoV-2
2.
Phys Chem Chem Phys ; 24(3): 1630-1637, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34951613

RESUMO

The nature of the nanoparticle-protein corona is emerging as a key aspect in determining the impact of nanomaterials on proteins and in general on the biological response. We previously demonstrated that citrate-stabilized gold nanoparticles (Cit-AuNPs) interact with ß2-microglobulin (ß2m) preserving the protein native structure. Moreover, Cit-AuNPs are able to hinder in vitro fibrillogenesis of a ß2m pathologic variant, namely D76N, by reducing the oligomeric association of the protein in solution. Here, we clarify the characteristics of the interaction between ß2m and Cit-AuNPs by means of different techniques, i.e. surface enhanced Raman spectroscopy, NMR and quartz crystal microbalance with dissipation monitoring. All the results obtained clearly show that by simply changing the ionic strength of the medium it is possible to switch from a labile and transient nature of the protein-NP adduct featuring the so-called soft corona, to a more "hard" interaction with a layer of proteins having a longer residence time on the NP surface. This confirms that the interaction between ß2m and Cit-AuNPs is dominated by electrostatic forces which can be tuned by modifying the ionic strength.


Assuntos
Nanopartículas Metálicas/química , Coroa de Proteína/química , Microglobulina beta-2/química , Citratos/química , Ouro/química , Mutação , Concentração Osmolar , Eletricidade Estática , Microglobulina beta-2/genética
3.
Bioinformatics ; 36(6): 1757-1764, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693089

RESUMO

MOTIVATION: Implicit solvent models play an important role in describing the thermodynamics and the dynamics of biomolecular systems. Key to an efficient use of these models is the computation of generalized Born (GB) radii, which is accomplished by algorithms based on the electrostatics of inhomogeneous dielectric media. The speed and accuracy of such computations are still an issue especially for their intensive use in classical molecular dynamics. Here, we propose an alternative approach that encodes the physics of the phenomena and the chemical structure of the molecules in model parameters which are learned from examples. RESULTS: GB radii have been computed using (i) a linear model and (ii) a neural network. The input is the element, the histogram of counts of neighbouring atoms, divided by atom element, within 16 Å. Linear models are ca. 8 times faster than the most widely used reference method and the accuracy is higher with correlation coefficient with the inverse of 'perfect' GB radii of 0.94 versus 0.80 of the reference method. Neural networks further improve the accuracy of the predictions with correlation coefficient with 'perfect' GB radii of 0.97 and ca. 20% smaller root mean square error. AVAILABILITY AND IMPLEMENTATION: We provide a C program implementing the computation using the linear model, including the coefficients appropriate for the set of Bondi radii, as Supplementary Material. We also provide a Python implementation of the neural network model with parameter and example files in the Supplementary Material as well. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Neurais de Computação , Modelos Lineares , Solventes , Eletricidade Estática , Termodinâmica
4.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207949

RESUMO

BACKGROUND: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of ß2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. METHODS: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. RESULTS: The solution structure of isolated Nb23 nanobody was determined. CONCLUSIONS: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.


Assuntos
Anticorpos Monoclonais/química , Cadeias Pesadas de Imunoglobulinas/química , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Anticorpos de Domínio Único/química , Microglobulina beta-2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Elementos Estruturais de Proteínas , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Microglobulina beta-2/imunologia
5.
Phys Chem Chem Phys ; 22(29): 17007, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672261

RESUMO

Correction for 'Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra' by Yamanappa Hunashal et al., Phys. Chem. Chem. Phys., 2020, 22, 6247-6259, DOI: .

6.
Phys Chem Chem Phys ; 22(11): 6247-6259, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129386

RESUMO

The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.


Assuntos
Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Magnetismo , Conformação Proteica
7.
Molecules ; 25(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171781

RESUMO

BACKGROUND: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, ß2-microglobulin (ß2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit ß2m fibril formation in vitro. METHODS: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on ß2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. RESULTS: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of ß2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. CONCLUSIONS: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Proteínas/química , Microglobulina beta-2/química , Amiloide/química , Óxidos N-Cíclicos/farmacologia , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Domínios Proteicos , Mapeamento de Interação de Proteínas , Espectrofotometria , Marcadores de Spin
8.
Acta Obstet Gynecol Scand ; 98(8): 958-966, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30723915

RESUMO

INTRODUCTION: The lowest incidence of perinatal morbidity and mortality occurs around 39-40 weeks. Therefore, some have advocated induction of uncomplicated singleton gestations once they reach full-term. The aim of the study was to evaluate the risk of cesarean delivery, and any maternal and perinatal effects of a policy of induction of labor in women with full-term uncomplicated singleton gestations. MATERIAL AND METHODS: We performed an electronic search from inception of each database to August 2018. All results were then limited to randomized trial. No restrictions for language or geographic location were applied. Inclusion criteria were randomized clinical trials of asymptomatic women with uncomplicated, singleton gestations at full-term (ie, between 39+0 and 40+6  weeks) who were randomized to either planned induction of labor or control (ie, expectant management). Only trials on asymptomatic singleton gestations without premature rupture of membranes or any other indications for induction evaluating the effectiveness of planned induction of labor in full-term singleton gestations were included. The primary outcome was the incidence of cesarean delivery. RESULTS: Seven randomized clinical trials, including 7598 participants were analyzed. Three studies enrolled only women with favorable cervix, defined as a Bishop score of ≥5 in nulliparous women or ≥4 in multiparous women. One trial included only women aged 35 years or older. Women randomized to the planned induction of labor, received scheduled induction usually at 39+0 to 39+6  weeks of gestation, whereas women in the control group received expectant management usually until 41-42 weeks of gestation, or earlier if medically indicated. Methods of induction usually included cervical ripening, with either misoprostol or Foley catheter, in conjunction with or followed by oxytocin for women with unfavorable cervix, and oxytocin and artificial rupture of membranes for those with favorable cervix. Five trials also used artificial rupture of membranes as a method for induction. Uncomplicated full-term singleton gestations that were randomized to receive induction of labor had similar incidence of cesarean delivery compared with controls (18.6% vs 21.4%; relative risk 0.96, 95% CI 0.78-1.19). Regarding neonatal outcomes, induction of labor at full-term was associated with a significantly lower rate of meconium-stained amniotic fluid (4.0% vs 13.5%; relative risk 0.32, 95% CI 0.18-0.57), and lower mean birthweight (mean difference -98.96 g, 95% CI -126.29 to -71.63) compared with the control group. There were no between-group differences in other adverse neonatal outcomes. CONCLUSIONS: Induction of labor at about 39 weeks is not associated with increased risk of cesarean delivery.


Assuntos
Trabalho de Parto Induzido/métodos , Adulto , Feminino , Humanos , Gravidez , Resultado da Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
9.
J Chem Inf Model ; 58(7): 1319-1324, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29897235

RESUMO

Entropy calculation is an important step in the postprocessing of molecular dynamics trajectories or predictive models. In recent years the nearest neighbor method has emerged as a powerful method to deal in a flexible way with the dimensionality of the problem. Here we provide two programs, PBD2ENTROPY and PDB2TRENT that compute the conformational and translational-rotational entropy, respectively, based on the nearest neighbor method. PDB2ENTROPY takes in input two files containing the following: (1) conformational ensembles of the same molecule(s) in PDB format and (2) definitions of torsion angles (a default file is provided where additional user definitions can be easily implemented). PDB2TRENT takes in a file containing samples of the complexed molecules, a string specifying atoms providing the reference framework to superimpose samples, and a string specifying atoms used to compute rotation and translation of one molecule with respect to the other. The C programs and sample demonstration data are available on the GitHub repository (URL: http://github.com/federico-fogolari/pdb2entropy and http://github.com/federico-fogolari/pdb2trent ).


Assuntos
Simulação por Computador , Entropia , Modelos Moleculares , Benzeno/química , Conformação Molecular , Muramidase/química , Rotação , Software , Solventes/química
10.
J Biomol NMR ; 67(2): 121-134, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28213793

RESUMO

We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.


Assuntos
Espectroscopia de Ressonância Magnética , Modelos Teóricos , Proteínas/química , Algoritmos , Automação , Humanos , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes
11.
J Biol Chem ; 289(6): 3318-27, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24338476

RESUMO

To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N ß2-microglobulin (ß2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N ß2m. Using biophysical and structural approaches, we show that the MHCI containing D76N ß2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type ß2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N ß2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N ß2m degradation within the cell. Accordingly, D76N ß2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.


Assuntos
Amiloide/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mutação de Sentido Incorreto , Microglobulina beta-2/metabolismo , Substituição de Aminoácidos , Amiloide/genética , Animais , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Transgênicos , Microglobulina beta-2/genética
12.
J Comput Chem ; 36(9): 585-96, 2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25581160

RESUMO

The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model.


Assuntos
DNA/química , Proteínas/química , Modelos Químicos , Modelos Moleculares , Termodinâmica
13.
J Biol Chem ; 288(24): 17844-58, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23645685

RESUMO

The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein ß2-microglobulin (ß2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aß2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aß2m. From analysis of the NMR spectra collected at various R3Aß2m to αB-crystallin molar subunit ratios, it is concluded that the structured ß-sheet core and the apical loops of R3Aß2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type ß2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type ß2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated ß2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing ß2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation.


Assuntos
Cadeia B de alfa-Cristalina/química , Microglobulina beta-2/química , Amiloide/química , Benzotiazóis , Corantes Fluorescentes/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Espectrometria de Massas por Ionização por Electrospray , Tiazóis/química
14.
J Biol Chem ; 288(43): 30917-30, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24014031

RESUMO

Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human ß2-microglobulin (ß2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N ß2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type ß2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition.


Assuntos
Amiloide/química , Mutação de Sentido Incorreto , Dobramento de Proteína , alfa-Cristalinas/química , Microglobulina beta-2/química , Substituição de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Amiloidose Familiar/genética , Amiloidose Familiar/metabolismo , Humanos , Estrutura Quaternária de Proteína , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
15.
Chemistry ; 20(42): 13603-17, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25195979

RESUMO

Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted.


Assuntos
Cetonas/química , Piridinas/química , Rutênio/química , Catálise , Hidrogenação , Modelos Moleculares
16.
J Neuroradiol ; 41(3): 153-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957685

RESUMO

The aim of this paper is to illustrate the potential of magnetic resonance imaging (MRI) in diagnosis, differential diagnosis, treatment planning and evaluation of therapy effectiveness of pyogenic brain abscesses, through the use of morphological (or conventional) and functional (or advanced) sequences. Conventional MRI study is useful for the identification of lesions, to determine the location and morphology and allows a correct hypothesis of nature in the most typical cases. However, the differential diagnosis from other brain lesions, such as non-pyogenic abscesses or necrotic tumors (high-grade gliomas and metastases) is often only possible through the use of functional sequences, as the measurement of diffusion with apparent diffusion coefficient (DWI-ADC), proton magnetic resonance spectroscopy ((1)H-MRS) and perfusion weighted imaging (PWI), which complement the morphological sequences and provide essential information on structural, metabolic and hemodynamic characteristics allowing greater neuroradiological confidence. Modern diagnostic MRI of pyogenic brain abscesses cannot be separated from knowledge, integration and proper use of the morphological and functional sequences.


Assuntos
Abscesso Encefálico/diagnóstico , Abscesso Encefálico/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/patologia , Encéfalo/fisiopatologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Diagnóstico Diferencial , Humanos
17.
PLoS One ; 19(5): e0303839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758765

RESUMO

The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.


Assuntos
Epitopos , Simulação de Dinâmica Molecular , SARS-CoV-2 , Anticorpos de Domínio Único , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , SARS-CoV-2/imunologia , Epitopos/imunologia , Epitopos/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Multimerização Proteica , COVID-19/imunologia , COVID-19/virologia , Proteínas de Ligação a RNA
18.
Eur J Intern Med ; 119: 109-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37648583

RESUMO

AIMS: Hyperkalemia often occurs among heart failure (HF) patients, particularly when treated with renin-angiotensin-aldosterone system inhibitors (RAASi). Even modest potassium levels variations raise the risk of mortality and prompt patients to discontinue disease-modifying treatment, as RAASi. Novel potassium binders (NPB), patiromer and sodium zirconium cyclosilicate, are effective in reducing potassium levels and are approved for the treatment of hyperkalemia in HF, but whether their use results in a real optimization of HF treatment remains to be seen. The aim of the present meta-analysis was to assess the efficacy of NPB on the optimization of RAASi therapy in HF patients. METHODS AND RESULTS: PubMed, Web of Science and Clinicaltrial.gov were searched without restrictions from inception to 06 August 2022 to identify valuable articles. The studies that met the inclusion criteria were analyzed. The prespecified primary outcome was the optimization of RAASi therapy in HF patients, defined as the proportion of patients on RAASi at the end of follow-up. Secondary outcomes were hyperkalemia events, reduction in potassium levels, and adverse drugs reactions. Six studies with a total of 1390 patients were included. NPB improved RAASi therapy optimization in HF by 14% (95% CI: 4-26%), decreased hyperkalemia events by 29% (95% CI: 55-92%), and reduced potassium levels by 0.31 mEq/L (95% CI: 0.18-0.44) compared to placebo, maintaining a good safety profile. CONCLUSION: NPB are effective in allowing RAASi therapy optimization in patients affected by HF, in reducing hyperkalemia events and potassium levels. SYSTEMATIC REVIEW REGISTRATION: CRD42022351811 URL: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=351811.


Assuntos
Insuficiência Cardíaca , Hiperpotassemia , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/complicações , Hiperpotassemia/tratamento farmacológico , Hiperpotassemia/complicações , Potássio/sangue , Insuficiência Renal Crônica/complicações , Sistema Renina-Angiotensina/efeitos dos fármacos , Silicatos/uso terapêutico
19.
Biochim Biophys Acta ; 1824(6): 842-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522028

RESUMO

The transient unfolding events from the native state of a protein towards higher energy states can be closely investigated by studying the process of hydrogen exchange. Here, we present BLUU-Tramp (Biophysics Laboratory University of Udine-Temperature ramp), a new method to measure the rates for the exchange process and the underlying equilibrium thermodynamic parameters, using just a single sample preparation, in a single experiment that lasts some 20 to 60h depending on the protein thermal stability, to record hundreds of points over a virtually continuous temperature window. The method is suitable also in presence of other proteins in the sample, if only the target protein is (15)N-labelled. This allows the complete thermodynamic description of the unfolding landscape at an atomic level in the presence of small or macromolecular ligands or cosolutes, or in physiological environments. The method was successfully tested with human ubiquitin. Then the unfolding thermodynamic parameters were satisfactorily determined for the amyloidogenic protein ß(2)-microglobulin, in aqueous buffer and in synovial liquid, that is the natural medium of amyloid deposition in joints.


Assuntos
Desdobramento de Proteína , Ubiquitina/química , Microglobulina beta-2/química , Sequência de Aminoácidos , Teorema de Bayes , Soluções Tampão , Medição da Troca de Deutério , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Líquido Sinovial/química , Termodinâmica
20.
Chembiochem ; 14(5): 583-92, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23440928

RESUMO

Aggregation of the amyloid-ß peptide (Aß) into fibrillar structures is a hallmark of Alzheimer's disease. Thus, preventing self-assembly of the Aß peptide is an attractive therapeutic strategy. Here, we used experimental techniques and atomistic simulations to investigate the influence of carnosine, a dipeptide naturally occurring in the brain, on Aß aggregation. Scanning force microscopy, circular dichroism and thioflavin T fluorescence experiments showed that carnosine does not modify the conformational features of Aß42 but nonetheless inhibits amyloid growth. Molecular dynamics (MD) simulations indicated that carnosine interacts transiently with monomeric Aß42 by salt bridges with charged side chains, and van der Waals contacts with residues in and around the central hydrophobic cluster ((17)LVFFA(21)). NMR experiments on the nonaggregative fragment Aß12-28 did not evidence specific intermolecular interactions between the peptide and carnosine, in agreement with MD simulations. However, a close inspection of the spectra revealed that carnosine interferes with the local propensity of the peptide to form backbone hydrogen bonds close to the central hydrophobic cluster (residues E22, S26 and N27). Finally, MD simulations of aggregation-prone Aß heptapeptide segments show that carnosine reduces the propensity to form intermolecular backbone hydrogen bonds in the region 18-24. Taken together, the experimental and simulation results (cumulative MD sampling of 0.2 ms) suggest that, despite the inability of carnosine to form stable contacts with Aß, it might block the pathway toward toxic aggregates by perturbing the hydrogen bond network near residues with key roles in fibrillogenesis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Carnosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Carnosina/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Eletricidade Estática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA