Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 103(8): 2853-2863, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38842564

RESUMO

Acute Myeloid Leukemia (AML) is a life-threatening disease whose induction treatment consists of combination chemotherapy with Idarubicin and Cytarabine for fit patients. Treatment failures are frequent, urging the need for novel treatments for this disease. The DNA Damage Response Mechanism (DDR) comprises numerous molecules and pathways intended to arrest the cell cycle until DNA damage is repaired or else drive the cell to apoptosis. AML-derived cell lines after treatment with Idarubicin and Cytarabine were used for studying the expression profile of 84 DDR genes, through PCR arrays. Utilizing de novo AML patient and control samples we studied the expression of PPP1R15A, CDKN1A, GADD45A, GADD45G, and EXO1. Next, we performed PPP1R15A silencing in AML cell lines in two separate experiments using siRNA and CRISPR-cas9, respectively. Our findings highlight that DDR regulators demonstrate increased expression in patients with high cytogenetic risk possibly reflecting increased genotoxic stress. Especially, PPP1R15A is mainly involved in the recovery of the cells from stress and it was the only DDR gene upregulated in AML patients. The PPP1R15A silencing resulted in decreased viability of Idarubicin and Cytarabine-treated cell lines, in contrast to untreated cells. These findings shed light on new strategies to enhance chemotherapy efficacy and demonstrate that PPP1R15A is an important DDR regulator in AML and its downregulation might be a safe and effective way to increase sensitivity to chemotherapy in this disease.


Assuntos
Citarabina , Dano ao DNA , Inativação Gênica , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Dano ao DNA/efeitos dos fármacos , Citarabina/farmacologia , Linhagem Celular Tumoral , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Idarubicina/farmacologia , Idarubicina/administração & dosagem , Masculino , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto , Idoso , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
2.
Cancer ; 129(11): 1744-1751, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840972

RESUMO

BACKGROUND: The bone/bone marrow is one of the most common sites for metastatic solid tumors. Moreover, the tumor microenvironment is an essential part of cancer homeostasis. Previously, it was shown that cytochrome P450 enzymes (CYPs) are present in the bone marrow (BM) microenvironment, particularly in the mesenchymal stroma cells, at levels comparable to those of hepatocytes. It was found that the CYPs play important roles in nurturing and maintaining normal hematopoietic stem cells as well as multiple myeloma and leukemia cells, including protecting them from toxic insults. It was hypothesized that the CYPs in the BM microenvironment might play a similar role in solid tumors metastatic to bone. METHODS: The interaction between the BM microenvironment and malignant cells that routinely metastasize to the bone (lung, breast, and prostate cancer) was modeled. Via genetic engineering and pharmacological approaches, the role of stromal cytochrome P450 3A4 (CYP3A4) in drug resistance promoted by the BM microenvironment in niche-cancer models in vitro and in vivo was interrogated. RESULTS: BM stroma protected prostate, breast, and lung cancer cells from cytotoxic chemotherapy. Stromal CYP3A4 was at least partially responsible for this protection in vitro and in vivo. Moreover, inhibiting CYP3A4 with clarithromycin overcame the stroma-mediated chemoresistance toward prostate, breast, and lung cancer cells. CONCLUSIONS: These results suggest that, similar to observations from hematologic malignancies, the BM microenvironment, through expression of CYPs, creates a sanctuary site from chemotherapy for metastatic solid tumors. Targeting these sanctuaries holds promise for eradicating bone metastasis in solid tumors.


Assuntos
Citocromo P-450 CYP3A , Segunda Neoplasia Primária , Humanos , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Segunda Neoplasia Primária/patologia , Microambiente Tumoral , Neoplasias/patologia
3.
Haematologica ; 108(7): 1886-1899, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519323

RESUMO

Better understanding of the biology of resistance to DNA methyltransferase (DNMT) inhibitors is required to identify therapies that can improve their efficacy for patients with high-risk myelodysplastic syndrome (MDS). CCRL2 is an atypical chemokine receptor that is upregulated in CD34+ cells from MDS patients and induces proliferation of MDS and secondary acute myeloid leukemia (sAML) cells. In this study, we evaluated any role that CCRL2 may have in the regulation of pathways associated with poor response or resistance to DNMT inhibitors. We found that CCRL2 knockdown in TF-1 cells downregulated DNA methylation and PRC2 activity pathways and increased DNMT suppression by azacitidine in MDS/sAML cell lines (MDS92, MDS-L and TF-1). Consistently, CCRL2 deletion increased the sensitivity of these cells to azacitidine in vitro and the efficacy of azacitidine in an MDS-L xenograft model. Furthermore, CCRL2 overexpression in MDS-L and TF-1 cells decreased their sensitivity to azacitidine. Finally, CCRL2 levels were higher in CD34+ cells from MDS and MDS/myeloproliferative neoplasm patients with poor response to DNMT inhibitors. In conclusion, we demonstrated that CCRL2 modulates epigenetic regulatory pathways, particularly DNMT levels, and affects the sensitivity of MDS/sAML cells to azacitidine. These results support CCRL2 targeting as having therapeutic potential in MDS/sAML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Linhagem Celular
4.
Sci Adv ; 8(7): eabl8952, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179961

RESUMO

The identification of new pathways supporting the myelodysplastic syndrome (MDS) primitive cells growth is required to develop targeted therapies. Within myeloid malignancies, men have worse outcomes than women, suggesting male sex hormone-driven effects in malignant hematopoiesis. Androgen receptor promotes the expression of five granulocyte colony-stimulating factor receptor-regulated genes. Among them, CCRL2 encodes an atypical chemokine receptor regulating cytokine signaling in granulocytes, but its role in myeloid malignancies is unknown. Our study revealed that CCRL2 is up-regulated in primitive cells from patients with MDS and secondary acute myeloid leukemia (sAML). CCRL2 knockdown suppressed MDS92 and MDS-L cell growth and clonogenicity in vitro and in vivo and decreased JAK2/STAT3/STAT5 phosphorylation. CCRL2 coprecipitated with JAK2 and potentiated JAK2-STAT interaction. Erythroleukemia cells expressing JAK2V617F showed less effect of CCRL2 knockdown, whereas fedratinib potentiated the CCRL2 knockdown effect. Conclusively, our results implicate CCRL2 as an MDS/sAML cell growth mediator, partially through JAK2/STAT signaling.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Proliferação de Células , Feminino , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA