RESUMO
We report the use of bifunctional starting materials (ketoacids) in a diastereoselective Passerini three-center-two-component reaction. Study of the reaction scope revealed the required structural features for stereoselectivity in the isocyanide addition. In this system, an interesting isomerization of the primary Passerini product - the α-carboxamido lactone - into an atypical product, an α-hydroxy imide, was found to occur under acidic conditions. Furthermore, enantioenriched Passerini products can be generated from an enantioenriched ketoacid obtained by chemoenzymatic synthesis.
RESUMO
Pyrrole is one of the most important one-ring heterocycles. The ready availability of suitably substituted and functionalized pyrrole derivatives is essential for the progress of many branches of science, including biology and materials science. Access to this key heterocycle by multicomponent routes is particularly attractive in terms of synthetic efficiency, and also from the environmental point of view. We update here our previous review on this topic by describing the progress made in this area in the period between mid-2009 and the end of 2013.
Assuntos
Pirróis/síntese química , Compostos Heterocíclicos/síntese químicaRESUMO
The nontyphoidal Salmonella enterica serovar Dublin is adapted to cattle but infrequently infects humans, very often resulting in invasive infections with high levels of morbidity and mortality. A Salmonella-induced intestinal acute inflammatory response is postulated as a mechanism to prevent bacterial dissemination to systemic sites. In S. enterica serovar Typhimurium, flagella contribute to this response by providing motility and FliC-mediated activation of pattern recognition receptors. In this study, we found 4 Salmonella enterica isolates, with the antigenic formula 9,12:-:-, that, based on fliC sequence and multilocus sequence type (MLST) analyses, are aflagellate S. Dublin isolates. Interestingly, all were obtained from human bloodstream infections. Thus, we investigated the potential role of flagella in the unusual invasiveness exhibited by S. Dublin in humans by analyzing flagellation and proinflammatory properties of a collection of 10 S. Dublin human clinical isolates. We found that 4 of 7 blood isolates were aflagellate due to significantly reduced levels of fliC expression, whereas all 3 isolates from other sources were flagellated. Lack of flagella correlated with a reduced ability of triggering interleukin-8 (IL-8) and CCL20 chemokine expression in human intestinal Caco-2 cells and with reduced early inflammation in the ceca of streptomycin-pretreated C57/BL6 mice. These results indicate that flagella contribute to the host intestinal inflammatory response to Salmonella serovar Dublin and suggest that their absence may contribute to its systemic dissemination through dampening of the gut immune response. Analysis of FliC production in a collection of cattle isolates indicated that the aflagellate phenotype is widely distributed in field isolates of S. Dublin.
Assuntos
Flagelos/fisiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/patogenicidade , Análise de Variância , Animais , Células CACO-2 , Ceco , Quimiocina CCL20/metabolismo , Feminino , Flagelina/genética , Flagelina/metabolismo , Humanos , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Infecções por Salmonella/patologia , Salmonella enterica/fisiologia , Especificidade da EspécieRESUMO
The indium trichloride-catalyzed reaction between aromatic imines and α,ß-unsaturated N,N-dimethylhydrazones in acetonitrile afforded 1,2,3,4-tetrahydroquinolines bearing a hydrazone function at C4 through a one-pot diastereoselective domino process that involves the formation of two C-C bonds and the controlled generation of two stereocenters, one of which is quaternary. This reaction constitutes the first example of an α,ß-unsaturated dimethylhydrazone that behaves as a dienophile in a hetero Diels-Alder reaction. The related reaction between anilines, aromatic aldehydes, and methacrolein dimethylhydrazone in CHCl(3) with BF(3)â Et(2)O as catalyst afforded polysubstituted 1,2,3,3a,4,8b-hexahydropyrrolo[3,2-b]indoles as major products through a fully diastereoselective ABB'C four-component domino process that generates two cycles, three stereocenters, two C-C bonds, and two C-N bonds in a single operation.
RESUMO
Multicomponent reactions are one of the most interesting concepts in modern synthetic chemistry and, as shown in this critical review, they provide an attractive entry into pyrrole derivatives, which are very important heterocycles from many points of view including medicinal and pharmaceutical chemistry and materials science (97 references).
Assuntos
Pirróis/síntese química , Estrutura Molecular , Pirróis/química , EstereoisomerismoRESUMO
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
Assuntos
COVID-19/complicações , Mutação , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/virologia , Surtos de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Uruguai/epidemiologia , Adulto JovemRESUMO
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
RESUMO
Bovine Respiratory Disease is the most costly disease that affects beef and dairy cattle industry. Its etiology is multifactorial, arising from predisposing environmental stress conditions as well as the action of several different respiratory pathogens. This situation has hindered the development of effective control strategies. Although different type of vaccines are available, many currently marketed vaccines are based on inactivated cultures of the main viral and bacterial agents involved in this pathology. The molecular composition of commercial veterinary vaccines is a critical issue. The present work aims to define at the proteomic level the most relevant valence of a line of commercial respiratory vaccines widely used in Central and South America. Since Mannheimia haemolytica is responsible for most of the disease associated morbid-mortality, we focused on the main proteins secreted by this pathogen, in particular Leukotoxin A, its main virulence factor. By Western blot analysis and mass spectrometry, Leukotoxin A was identified as a major component of M. haemolytica culture supernatants. We also identified other ten M. haemolytica proteins, including outer membrane proteins, periplasmic transmembrane solute transporters and iron binding proteins, which are relevant to achieve protective immunity against the pathogen. This work allowed a detailed molecular characterization of this vaccine component, providing evidence of its quality and efficacy. Furthermore, our results contributed to the identification of several proteins of interest as subunit vaccine candidates.
RESUMO
Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.
Assuntos
Cervos , Príons/administração & dosagem , Príons/imunologia , Vacinas contra Salmonella/administração & dosagem , Doença de Emaciação Crônica/prevenção & controle , Administração através da Mucosa , Animais , Sangue/imunologia , Imunoglobulina A/análise , Imunoglobulina G/sangue , Príons/genética , Saliva/imunologia , Vacinas contra Salmonella/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Doença de Emaciação Crônica/imunologiaRESUMO
A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, ß-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.