RESUMO
We conducted surveillance studies in Sinaloa, Mexico, to determine the circulation of tick-borne relapsing fever spirochetes. We collected argasid ticks from a home in the village of Camayeca and isolated spirochetes. Genomic analysis indicated that Borrelia turicatae infection is a threat to those living in resource-limited settings.
Assuntos
Infecções por Borrelia , Borrelia , Febre Recorrente , Carrapatos , Animais , México/epidemiologia , Borrelia/genética , Febre Recorrente/epidemiologia , Infecções por Borrelia/epidemiologiaRESUMO
Coffee leaf rust (CLR), caused by Hemileia vastatrix, is considered a highly important phytosanitary problem in Mexico. Currently, there are few microorganisms used as biocontrol alternatives to chemical control of CLR in organic coffee fields in Mexico. This study evaluates the use of Paenibacillus sp. NMA1017 as a biocontrol agent to inhibit the development of H. vastatrix in in vitro and in vivo (greenhouse) experiments. Hemileia vastatrix urediniospores were placed on water agar plates, and then Paenibacillus sp. NMA1017 was inoculated simultaneously or 8 h later. Urediniospores germination rate was reduced by 94% when the NMA1017 strain was inoculated simultaneously with the urediniospores and reduced by 38% when NMA1017 was inoculated 8 h later. Experiments with 8-month-old Bourbon coffee plants that were infected with H. vastatrix showed that disease incidence was reduced by 38, 90, and 50% when NMA1017 was applied 8 days before, simultaneously, or 8 days after the application of H. vastatrix, respectively. Paenibacillus sp. NMA1017 also reduced the severity of CLR on the leaves by up to 62%. The germination urediniospores of other rust pathogens such as Puccinia sorghi (maize leaf rust), Puccinia triticina (wheat leaf rust), Puccinia graminis f. sp. tritici (black stem rust of wheat), Uromyces striatus (alfalfa leaf rust), and Phragmidium sp. (rosebush leaf rust) were also inhibited. Use of the potential biocontrol agent Paenibacillus sp. NMA1017 might help reduce the application of chemical fungicides for the control of CLR, making coffee a more sustainable crop and providing management options for organic coffee growers.
Assuntos
Basidiomycota , Paenibacillus , Doenças das Plantas , Folhas de Planta , Paenibacillus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Basidiomycota/fisiologia , Folhas de Planta/microbiologia , Coffea/microbiologia , México , Agentes de Controle Biológico/farmacologia , Controle Biológico de VetoresRESUMO
Four Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped, motile endophytic bacterial strains, designated NM3R9T, NE1TT3, NE2TL11 and NE2HP2T, were isolated from the inner tissues (leaf and stem) of Sphaeralcea angustifolia and roots of Prosopis laevigata. They were characterized using a polyphasic approach, which revealed that they represent two novel Microbacterium species. Phylogenetic analysis based on 16S rRNA gene sequencing showed that the species closest to NE2HP2T was Microbacterium arborescens DSM 20754T (99.6â%) and that closest to NM3R9T, NE2TL11 and NE2TT3 was Microbacterium oleivorans NBRC 103075T (97.4â%). The whole-genome average nucleotide identity value between strain NM3R9T and Microbacterium imperiale DSM 20530T was 90.91â%, and that between strain NE2HP2T and M. arborecens DSM 20754T was 91.03â%. Digital DNA-DNA hybridization showed values of less than 70â% with the type strains of related species. The polar lipids present in both strains included diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified lipids, whereas the major fatty acids included anteiso-C15â:â0, anteiso-C17â:â0, iso-C16â:â0 and C16â:â0. Whole-cell sugars included mannose, rhamnose and galactose. Strains NM3R9T and NE2HP2T showed physiological characteristics different from those present in closely related Microbacterium species. According to the taxonomic analysis, both strains belong to two novel species. The name Microbacterium plantarum sp. nov. is proposed for strain NE2HP2T (=LMG 30875T=CCBAU 101117T) and Microbacterium thalli sp. nov. for strains NM3R9T (=LMG 30873T=CCBAU 101116T), NE1TT3 (=CCBAU 101114) and NE2TL11 (=CCBAU 101115).
Assuntos
Actinomycetales , Prosopis , Ácidos Graxos/química , Fosfolipídeos/análise , Prosopis/genética , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Vitamina K 2RESUMO
Due to the increase in multidrug-resistant microorganisms, the investigation of novel or more efficient antimicrobial compounds is essential. The World Health Organization issued a list of priority multidrug-resistant bacteria whose eradication will require new antibiotics. Among them, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae are in the "critical" (most urgent) category. As a result, major investigations are ongoing worldwide to discover new antimicrobial compounds. Burkholderia, specifically Burkholderia sensu stricto, is recognized as an antimicrobial-producing group of species. Highly dissimilar compounds are among the molecules produced by this genus, such as those that are unique to a particular strain (like compound CF66I produced by Burkholderia cepacia CF-66) or antimicrobials found in a number of species, e.g., phenazines or ornibactins. The compounds produced by Burkholderia include N-containing heterocycles, volatile organic compounds, polyenes, polyynes, siderophores, macrolides, bacteriocins, quinolones, and other not classified antimicrobials. Some of them might be candidates not only for antimicrobials for both bacteria and fungi, but also as anticancer or antitumor agents. Therefore, in this review, the wide range of antimicrobial compounds produced by Burkholderia is explored, focusing especially on those compounds that were tested in vitro for antimicrobial activity. In addition, information was gathered regarding novel compounds discovered by genome-guided approaches.
Assuntos
Anti-Infecciosos , Bacteriocinas , Burkholderia cepacia , Burkholderia , AntibacterianosRESUMO
Soft ticks from the Ornithodoros genus are vectors of relapsing fever (RF) spirochetes around the world. In Mexico, they were originally described in the 19th century. However, few recent surveillance studies have been conducted in Mexico, and regions where RF spirochetes circulate remain vague. Here, the presence of soft ticks in populated areas was assessed in two sites from the Mexican states of Aguascalientes and Zacatecas. Argasidae ticks were collected, identified by morphology and mitochondrial 16S rDNA gene sequencing, and tested for RF borreliae. The specimens in both sites were identified as Ornithodoros turicata but no RF spirochetes were detected. These findings emphasize the need to update the distribution of these ticks in multiple regions of Mexico and to determine the circulation of RF borreliosis in humans and domestic animals.
Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Humanos , Animais , Febre Recorrente/epidemiologia , Borrelia/genética , Animais DomésticosRESUMO
Rickettsia species are bacteria that may cause multiple diseases in animals and humans, via transmission through multiple arthropod vectors. Routine surveillance of Rickettsia spp. within vectors is critical to determine their presence and risk to mammalian hosts within human populations. Therefore, to better characterize the circulating Rickettsia species in an understudied region we targeted pet dogs to survey. Ticks were collected from pet dogs in three populations of the Yucatan where we tested for the presence of Rickettsia spp. by PCR in metagenomic DNA. In these ticks removed from pet dogs we detected Rickettsia amblyommatis and Rickettsia bellii in Amblyomma auriculatum, Amblyomma ovale and Amblyomma mixtum ticks obtained in a rural community in the Mexican state of Yucatan. This is the first report detecting both species for this state in Mexico, underpinning the importance of more routine surveillance.
Assuntos
Ixodidae , Rickettsia , Carrapatos , Animais , Cães , Humanos , Carrapatos/microbiologia , México , Mamíferos , Ixodidae/microbiologia , Brasil/epidemiologiaRESUMO
CRISPR-Cas systems are composed of repeated sequences separated by non-repeated sequences that are near genes coding for Cas proteins, which are involved in the function of these systems. Their function has been mostly related to "genetic immunity" against foreign genetic material, among other roles. Interest in them increased after their use in genetic manipulation was uncovered and surveys to find and classify them have been done in several bacterial groups. To determine the presence of these genetic elements in the Burkholderiaceae family members, a bioinformatic approach was followed. Attention in this family comes as it is formed by a great diversity of microorganisms that include opportunistic and true pathogens, and symbiotic and saprophytic organisms, among others. Results show that, in contrast to other bacterial groups, only 8.4% of family members harbor complete CRISPR-Cas systems and the rest either do not have one or have remains or sections of one. Analyses of the spacer sequences indicated that most of them have identity to sections of the same genomes they were found, while a few had identities with either plasmids or phages. The genus with the higher proportion of self-directed spacers is Ralstonia, and their possible roles are discussed. Most of the systems (60%) belong to the class I subtype I-E and a few to subtypes I-C (13.3%), I-F (18.3%), II-C (5%), IV-A (1.7%) and V-C (1.7%). To the best of our knowledge, this is the first study to uncover the CRISPR-Cas system for the whole Burkholderiaceae family.
Assuntos
Bacteriófagos , Burkholderiaceae , Sistemas CRISPR-Cas , Burkholderiaceae/genética , Plasmídeos , Biologia Computacional , Bacteriófagos/genética , Bactérias/genéticaRESUMO
Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).
Assuntos
Complexo Burkholderia cepacia , Burkholderia , Complexo Burkholderia cepacia/genética , DNA Bacteriano/genética , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Environmental pollution as a result of heavy metals (HMs) is a worldwide problem and the implementation of eco-friendly remediation technologies is thus required. Metallophores, low molecular weight compounds, could have important biotechnological applications in the fields of agriculture, medicine, and bioremediation. This study aimed to isolate HM-resistant bacteria from soils and sediments of the Lerma-Chapala Basin and evaluated their abilities to produce metallophores and to promote plant growth. Bacteria from the Lerma-Chapala Basin produced metallophores for all the tested metal ions, presented a greater production of As3+ metallophores, and showed high HM resistance especially to Zn2+, As5+, and Ni2+. A total of 320 bacteria were isolated with 170 strains showing siderophores synthesis. Members of the Delftia and Pseudomonas genera showed above 92 percent siderophore units (psu) during siderophores production and hydroxamate proved to be the most common functional group among the analyzed siderophores. Our results provided evidence that Lerma-Chapala Basin bacteria and their metallophores could potentially be employed in bioremediation processes or may even have potential for applications in other biotechnological fields.
Assuntos
Metais Pesados , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análiseRESUMO
Extracts of Hibiscus sabdariffa L. (commonly called Rosselle or "Jamaica flower" in Mexico) have been shown to have antibiotic and antivirulence properties in several bacteria. Here, an organic extract of H. sabdariffa L. is shown to inhibit motility in Salmonella enterica serovars Typhi and Typhimurium. The compound responsible for this effect was purified and found to be the hibiscus acid. When tested, this compound also inhibited motility and reduced the secretion of both flagellin and type III secretion effectors. Purified hibiscus acid was not toxic in tissue-cultured eukaryotic cells, and it was able to reduce the invasion of Salmonella Typhimurium in epithelial cells. Initial steps to understand its mode of action showed it might affect membrane proton balance.
Assuntos
Antibacterianos/farmacologia , Citratos/farmacologia , Flagelos/fisiologia , Flores/química , Hibiscus/química , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Flagelos/efeitos dos fármacosRESUMO
Heavy-metal (HM) contamination is a huge environmental problem in many countries including Mexico. Currently, microorganisms with multiple heavy-metal resistance and/or plant-promoting characteristics have been widely used for bioremediation of HM-contaminated soils. The aim of the study was isolated bacteria with multiple heavy-metal resistance and to determinate the resistance mechanism developed by these organisms. A total of 138 aerobic bacteria were isolated from soil and sediments surrounding the Lerma-Chapala basin located in the boundary of the States of Michoacán and Jalisco states of Mexico. One hundred and eight strains showed at least 1 plant growth-promoting features. The Lerma-Chapala basin bacteria were also resistant to high concentrations of HMs including the metalloid arsenic. Sequence analysis of 16S RNA genes reveled that these bacteria were mainly affiliated to the phyla Proteobacteria (38%), Firmicutes (31%) and Actinobacteria (25%), covering 21 genera with Bacillus as the most abundant one. Among them, at least 27 putative novel species were detected in the genera Acinetobacter, Arthrobacter, Bacillus, Agrobacterium, Dyadobacter, Enterobacter, Exiguobacterium, Kluyvera, Micrococcus, Microbacterium and Psychrobacter. In addition, these bacteria developed various heavy-metal-resistance mechanisms, such as biosorption/bioaccumulation, immobilization and detoxification. Therefore, the bacteria isolated from soils and sediments of Lerma-Chapala basin could be used in bioremediation strategies.
Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Metais Pesados/análise , Metais Pesados/metabolismo , Arsênio/análise , Bactérias/genética , Bactérias/isolamento & purificação , México , Desenvolvimento Vegetal , Solo/química , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
BACKGROUND: Melioidosis is an infectious disease caused by Burkholderia pseudomallei. In Mexico, the disease is rarely diagnosed in humans and there is no evidence of simultaneous environmental isolation of the pathogen. Here, we describe clinical profiles of fatal cases of melioidosis in two children, in a region without history of that disease. CASE PRESENTATION: About 48 h before onset of symptoms, patients swam in a natural body of water, and thereafter they rapidly developed fatal septicemic illness. Upon necropsy, samples from liver, spleen, lung, cerebrospinal fluid, and bronchial aspirate tissues contained Burkholderia pseudomallei. Environmental samples collected from the locations where the children swam also contained B. pseudomallei. All the clinical and environmental strains showed the same BOX-PCR pattern, suggesting that infection originated from the area where the patients were swimming. CONCLUSIONS: The identification of B. pseudomallei confirmed that melioidosis disease exists in Sonora, Mexico. The presence of B. pseudomallei in the environment may suggest endemicity of the pathogen in the region. This study highlights the importance of strengthening laboratory capacity to prevent and control future melioidosis cases.
Assuntos
Melioidose/complicações , Pneumonia Bacteriana/etiologia , Adolescente , Burkholderia pseudomallei/isolamento & purificação , Criança , Evolução Fatal , Feminino , Humanos , Masculino , Melioidose/diagnóstico , Melioidose/patologia , Melioidose/fisiopatologia , México , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/fisiopatologia , Sepse/microbiologia , NataçãoRESUMO
Cacao represents an important source of income for farmers in the south of Mexico. However, phytosanitary problems have disrupted the production over the years. The use of antagonistic microorganisms as biocontrol agents might improve the production of cacao. In this study, Paenibacillus polymyxa NMA1017, isolated from the rhizosphere of Opuntia ficus-indica L., was used as a biocontrol agent for black pod rot of Theobroma cacao L. cultivated in Chiapas, Mexico. The experiments were carried in vitro and in vivo using pear fruit (Pyrous communis) as model and cacao pods in the field, respectively. The effect of NMA1017 on the phytopathogen was observed by electron microscopy and the production of enzymes was tested as a potential mechanism of action. The bacterium inhibited the radial growth of Phytophthora tropicalis PtCa-14 by 85.9 ± 0.12%. The strain NMA1017 affected mycelial development, as observed by the damage to the cell wall of the oomycete. In pear fruit, the biocontrol agent controlled the production of mycelium on the pear fruit surface, indicating an inhibitory effect exerted. Cacao pods infected with P. tropicalis in the field resulted in a reduction in disease incidence from 86 to 33% and in infection from 68 to 6%. Moreover, strain NMA1017 produced hydrolytic enzymes such as cellulases, xylanases, chitinases and proteases. The results obtained highlight P. polymyxa NMA1017 as an organism of interest for the biocontrol of P. tropicalis, as a method to rescue this important crop in Mexico.
Assuntos
Cacau , Paenibacillus polymyxa , Phytophthora , México , Doenças das Plantas/prevenção & controleRESUMO
During the isolation of bacteria from the Agave L. rhizosphere in northeast Mexico, four strains with similar BOX-PCR patterns were collected. The 16S rRNA gene sequences of all four strains were very similar to each other and that of the type strains of Cupriavidus metallidurans CH34T (98.49â% sequence similarity) and Cupriavidus necator N-1T (98.35â%). The genome of strain ASC-9842T was sequenced and compared to those of other Cupriavidus species. ANIb and ANIm values with the most closely related species were lower than 95%, while the in silico DNA-DNA hybridization values were also much lower than 70â%, consistent with the proposal that they represent a novel species. This conclusion was supported by additional phenotypic and chemotaxonomic analyses. Therefore, the name Cupriavidus agavae sp. nov. is proposed with the type strain ASC-9842T (=LMG 26414T=CIP 110327T).
Assuntos
Agave/microbiologia , Cupriavidus/classificação , Filogenia , Rizosfera , Técnicas de Tipagem Bacteriana , Composição de Bases , Cupriavidus/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , México , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Acetic acid bacteria (AAB) are associated with plants and insects. Determinants for the targeting and occupation of these widely different environments are unknown. However, most of these natural habitats share plant-derived sucrose, which can be metabolized by some AAB via polyfructose building levansucrases (LS) known to be involved in biofilm formation. Here, we propose two LS types (T) encoded by AAB as determinants for habitat selection, which emerged from vertical (T1) and horizontal (T2) lines of evolution and differ in their genetic organization, structural features and secretion mechanism, as well as their occurrence in proteobacteria. T1-LS are secreted by plant-pathogenic α- and γ-proteobacteria, while T2-LS genes are common in diazotrophic, plant-growth-promoting α-, ß- and γ-proteobacteria. This knowledge may be exploited for a better understanding of microbial ecology, plant health and biofilm formation by sucrase-secreting proteobacteria in eukaryotic hosts.
Assuntos
Ecossistema , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteobactérias/enzimologia , Animais , Hexosiltransferases/classificação , Insetos/microbiologia , Plantas/microbiologia , Proteobactérias/genéticaRESUMO
"Burkholderia dabaoshanensis" was described in 2012. Although the name was effectively published, it could not be validly published, because the description provided in the original paper did not comply with the Rule 27 (2) (c) of the Bacterial Code. The Code requiresthat the properties of the taxon form part of the protologue. As the name of this species does not have standing in nomenclature, the recently published new combination Trinickia dabaoshanensis could also not be validly published. The current proposal attempts to rectify the situation by providing the information required to meet the criteria stipulated in Rule 27 for valid publication.
Assuntos
Burkholderia/classificação , Burkholderia/genética , Terminologia como Assunto , Microbiologia do SoloRESUMO
Aiming at revealing the arsenic (As) resistance of the endophytic Kocuria strains isolated from roots and stems of Sphaeralcea angustifolia grown at mine tailing, four strains belonging to different clades of Kocuria based upon the phylogeny of 16S rRNA genes were screened for minimum inhibitory concentration (MIC). Only the strain NE1RL3 was defined as an As-resistant bacterium with MICs of 14.4/0.0125 mM and 300/20.0 mM for As3+ and As5+, respectively, in LB/mineral media. This strain was identified as K. palustris based upon analyses of cellular chemical compositions (cellular fatty acids, isoprenoides, quinones, and sugars), patterns of carbon source, average nucleotide identity of genome and digital DNA-DNA relatedness. Six genes coding to enzymes or proteins for arsenate reduction and arsenite-bumping were detected in the genome, demonstrating that this strain is resistant to As possibly by reducing As5+ to As3+, and then bumping As3+ out of the cell. However, this estimation was not confirmed since no arsenate reduction was detected in a subsequent assay. This study reported for the first time the presence of phylogenetically distinct arsenate reductase genes in a Kocuria strain and evidenced the possible horizontal transfer of these genes among the endophytic bacteria.
Assuntos
Arseniato Redutases/genética , Arseniatos/metabolismo , Micrococcaceae/enzimologia , Micrococcaceae/genética , Arsênio/farmacologia , Arsenitos/metabolismo , Testes de Sensibilidade Microbiana , Micrococcaceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Traqueófitas/microbiologiaRESUMO
Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.
Assuntos
Antibiose , Burkholderia cenocepacia/genética , Complexo Burkholderia cepacia , Carbono/metabolismo , Genoma Bacteriano , Nitrogênio/metabolismo , Bacteriocinas/genética , Burkholderia cenocepacia/isolamento & purificação , Quitinases/genética , Solanum lycopersicum/microbiologia , México , Rizosfera , Análise de Sequência de DNA , Sideróforos/genética , Microbiologia do SoloRESUMO
The Burkholderia cepacia complex is a group of 22 species, which are known as opportunistic pathogens in immunocompromised people, especially those suffering from cystic fibrosis. It is also found in nosocomial infections and is difficult to eradicate due to intrinsic resistance to several antibiotics. The species have large genomes (up to 9 Mbp), distributed into 2-5 replicons. These features significantly contribute to genome plasticity, which makes them thrive in different environments like soil, water, plants or even producing nodules in legume plants. Some B. cepacia complex species are beneficial in bioremediation, biocontrol and plant-growth promotion. However, because the B. cepacia complex is involved in human infection, its use in agriculture is restricted. B. cepacia complex is being constantly studied due to the health problems that it causes and because of its agricultural potential. In this review, the history of B. cepacia complex and the most recently published information related to this complex are revised.
Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia/fisiologia , Desenvolvimento Vegetal , Plantas/microbiologia , Animais , Infecções por Burkholderia/veterinária , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/patogenicidade , HumanosRESUMO
The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain-specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected. Nevertheless, the previous activities are not responsible for the whole antimicrobial spectrum of TAtl-371 seen on agar plates, suggesting the presence of other compounds yet to be found. In summary, we observed a diversified antimicrobial activity for strain TAtl-371 and believe it supports the biotechnological potential of this Bcc strain as a source of new antimicrobials.