Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Allergy ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003594

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS: We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS: Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS: COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.

2.
Int Arch Allergy Immunol ; 184(9): 932-948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321197

RESUMO

INTRODUCTION: Neutrophilic granulocytes represent the first line of defense against microorganisms. Granulocytes phagocytose microorganisms and specifically synthesize oxygen radicals against them, which eventually kills the invaders. METHODS: Neutrophilic granulocytes were isolated from peripheral blood of healthy volunteer donors. Putative interference of new-generation antibiotics with neutrophil function was tested using a collection of granulocyte-stimulating agents and Amplex™ Red-based plate assay and flow cytometry-based respiratory burst assays. In addition, phagocytosis of E. coli, IL-8 production, bactericidal activity, and CD62L expression of granulocytes were evaluated. RESULTS: Of note, we found that the two glycopeptide antibiotics dalbavancin and teicoplanin inhibited ROS production upon granulocyte activation via different signaling pathways in a dose-dependent manner. Dalbavancin also blocked the PMA-induced shedding of CD62L. In contrast, the oxazolidinone antibiotics tedizolid and linezolid had no effect on neutrophil function, while the combination of ceftazidime/avibactam dose dependently inhibited the fMLP/Cytochalasin B-induced granulocyte burst in a dose-dependent manner. Additionally, we showed that dalbavancin and teicoplanin as well as sulfametrole/trimethoprim and ceftazidime/avibactam inhibited baseline and PMA-induced IL-8 production by neutrophilic granulocytes. Moreover, dalbavancin impaired the bactericidal activity of neutrophilic granulocytes. CONCLUSION: We here identified hitherto unknown inhibitory effects of several classes of antibiotics on the effector functions of neutrophilic granulocytes.


Assuntos
Ceftazidima , Neutrófilos , Humanos , Ceftazidima/metabolismo , Ceftazidima/farmacologia , Teicoplanina/farmacologia , Teicoplanina/metabolismo , Escherichia coli , Interleucina-8/metabolismo , Antibacterianos/farmacologia
3.
Allergy ; 76(3): 751-765, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128792

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID-19-infected patients during disease but little is known regarding a possible protracted impact of COVID-19 on the adaptive and innate immune system in COVID-19 convalescent patients. METHODS: We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS-CoV-2-specific antibody levels against the S-protein, its RBD-subunit, and viral nucleocapsid in a cohort of COVID-19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. RESULTS: Even ten weeks after disease COVID-19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA-DR and CD38 expression. Multiparametric regression analyses showed that in COVID-19-infected patients both CD3+ CD4+ and CD3+ CD8+ effector memory cells were higher, while CD25+ Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID-19-infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti-S and anti-RBD, but not anti-NC antibody levels. Moreover, a "young immunological age" as determined by numbers of CD3+ CD45RA+ CD62L+ CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. CONCLUSION: Acute SARS-CoV-2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Linfócitos/imunologia , Neutrófilos/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Convalescença , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
J Leukoc Biol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450755

RESUMO

The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism; a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, where mutations in metabolic enzymes validate their critical role for neutrophil function.

6.
Trends Pharmacol Sci ; 45(4): 335-349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494408

RESUMO

Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.


Assuntos
Macrófagos , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/tratamento farmacológico
7.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675759

RESUMO

BACKGROUND: COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS: We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS: RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION: We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA