Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 164: 4084-4094, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890563

RESUMO

A facile and greener methodology to obtain pure chitosan-based 3D porous structures in the form of monoliths and films is proposed. It is based on a modified evaporation-induced phase separation process in a chitosan solution precursor. In this approach, a deep eutectic solvent (DES) is used as the nonsolvent system and an ecofriendly, cost effective, simple and versatile alternative for the production of highly structured chitosan materials. The porous heterogeneous structure can be fine-tuned by varying the chitosan content in the precursor solution and chitosan/DES ratio, and enabled the structured polymer to absorb large amounts of water to form hydrogels. This is a versatile and unexplored approach to design porous chitosan with tailored morphology in the absence of crosslinkers, which, based on preliminary studies on V. cholerae biofilm formation, is expected to open new avenues for various applications in biomedical, catalysis, water purification, filtration and other areas where the control of bacterial biofilm formation is critical.


Assuntos
Biopolímeros/química , Quitosana/química , Solventes/química , Fenômenos Químicos , Extração Líquido-Líquido , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA