Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cereb Cortex ; 27(11): 5398-5414, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968789

RESUMO

There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 µm2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 µm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 MΩ, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as "slim-tufted" and "profuse-tufted" HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.


Assuntos
Células Piramidais/citologia , Células Piramidais/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Adulto , Animais , Neoplasias Encefálicas/cirurgia , Tamanho Celular , Epilepsia/cirurgia , Humanos , Imageamento Tridimensional/métodos , Camundongos , Pessoa de Meia-Idade , Modelos Estatísticos , Técnicas de Patch-Clamp , Análise de Componente Principal , Processamento de Sinais Assistido por Computador , Especificidade da Espécie , Lobo Temporal/cirurgia , Técnicas de Cultura de Tecidos , Adulto Jovem
2.
Cereb Cortex ; 25(12): 4839-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318661

RESUMO

The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.


Assuntos
Axônios , Dendritos , Neocórtex/citologia , Células Piramidais/citologia , Lobo Temporal/citologia , Adulto , Idoso , Animais , Análise por Conglomerados , Epilepsia/patologia , Feminino , Humanos , Macaca fascicularis/anatomia & histologia , Macaca mulatta/anatomia & histologia , Masculino , Camundongos/anatomia & histologia , Camundongos Endogâmicos C57BL/anatomia & histologia , Pessoa de Meia-Idade , Especificidade da Espécie , Adulto Jovem
3.
J Neurosci ; 34(24): 8063-71, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920612

RESUMO

This study highlights a new and powerful direct impact of the dendritic tree (the input region of neurons) on the encoding capability of the axon (the output region). We show that the size of the dendritic arbors (its impedance load) strongly modulates the shape of the action potential (AP) onset at the axon initial segment; it is accelerated in neurons with larger dendritic surface area. AP onset rapidness is key in determining the capability of the axonal spikes to encode (phase lock to) rapid changes in synaptic inputs. Hence, our findings imply that neurons with larger dendritic arbors have improved encoding capabilities. This "dendritic size effect" was explored both analytically as well as numerically, in simplified and detailed models of 3D reconstructed layer 2/3 cortical pyramidal cells of rats and humans. The cutoff frequency of spikes phase locking to modulated inputs increased from 100 to 200 Hz in pyramidal cells of young rats to 400-600 Hz in human cells. In the latter case, phase locking reached close to 1 KHz in in vivo-like conditions. This work highlights new and functionally profound cross talk between the dendritic tree and the axon initial segment, providing new understanding of neurons as sophisticated nonlinear input/output devices.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Células Piramidais/citologia , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Estimulação Elétrica , Humanos , Modelos Neurológicos , Ratos
4.
Nat Commun ; 11(1): 288, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941884

RESUMO

Detailed conductance-based nonlinear neuron models consisting of thousands of synapses are key for understanding of the computational properties of single neurons and large neuronal networks, and for interpreting experimental results. Simulations of these models are computationally expensive, considerably curtailing their utility. Neuron_Reduce is a new analytical approach to reduce the morphological complexity and computational time of nonlinear neuron models. Synapses and active membrane channels are mapped to the reduced model preserving their transfer impedance to the soma; synapses with identical transfer impedance are merged into one NEURON process still retaining their individual activation times. Neuron_Reduce accelerates the simulations by 40-250 folds for a variety of cell types and realistic number (10,000-100,000) of synapses while closely replicating voltage dynamics and specific dendritic computations. The reduced neuron-models will enable realistic simulations of neural networks at unprecedented scale, including networks emerging from micro-connectomics efforts and biologically-inspired "deep networks". Neuron_Reduce is publicly available and is straightforward to implement.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Dinâmica não Linear , Algoritmos , Animais , Cálcio/metabolismo , Dendritos/fisiologia , Camundongos , N-Metilaspartato/metabolismo , Células Piramidais/fisiologia , Análise Espaço-Temporal , Sinapses/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Front Cell Neurosci ; 12: 181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008663

RESUMO

We present detailed models of pyramidal cells from human neocortex, including models on their excitatory synapses, dendritic spines, dendritic NMDA- and somatic/axonal Na+ spikes that provided new insights into signal processing and computational capabilities of these principal cells. Six human layer 2 and layer 3 pyramidal cells (HL2/L3 PCs) were modeled, integrating detailed anatomical and physiological data from both fresh and postmortem tissues from human temporal cortex. The models predicted particularly large AMPA- and NMDA-conductances per synaptic contact (0.88 and 1.31 nS, respectively) and a steep dependence of the NMDA-conductance on voltage. These estimates were based on intracellular recordings from synaptically-connected HL2/L3 pairs, combined with extra-cellular current injections and use of synaptic blockers, and the assumption of five contacts per synaptic connection. A large dataset of high-resolution reconstructed HL2/L3 dendritic spines provided estimates for the EPSPs at the spine head (12.7 ± 4.6 mV), spine base (9.7 ± 5.0 mV), and soma (0.3 ± 0.1 mV), and for the spine neck resistance (50-80 MΩ). Matching the shape and firing pattern of experimental somatic Na+-spikes provided estimates for the density of the somatic/axonal excitable membrane ion channels, predicting that 134 ± 28 simultaneously activated HL2/L3-HL2/L3 synapses are required for generating (with 50% probability) a somatic Na+ spike. Dendritic NMDA spikes were triggered in the model when 20 ± 10 excitatory spinous synapses were simultaneously activated on individual dendritic branches. The particularly large number of basal dendrites in HL2/L3 PCs and the distinctive cable elongation of their terminals imply that ~25 NMDA-spikes could be generated independently and simultaneously in these cells, as compared to ~14 in L2/3 PCs from the rat somatosensory cortex. These multi-sites non-linear signals, together with the large (~30,000) excitatory synapses/cell, equip human L2/L3 PCs with enhanced computational capabilities. Our study provides the most comprehensive model of any human neuron to-date demonstrating the biophysical and computational distinctiveness of human cortical neurons.

6.
Elife ; 52016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27710767

RESUMO

The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.


Assuntos
Potenciais de Ação/fisiologia , Membrana Celular/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Células Piramidais/fisiologia , Adulto , Idoso de 80 Anos ou mais , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Membrana Celular/ultraestrutura , Dendritos/fisiologia , Dendritos/ultraestrutura , Feminino , Humanos , Masculino , Camundongos , Microtomia , Pessoa de Meia-Idade , Neocórtex/citologia , Técnicas de Patch-Clamp , Células Piramidais/ultraestrutura , Lobo Temporal/citologia , Lobo Temporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA