Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 61(6): 537-548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319795

RESUMO

Transglutaminase 2 (TG2) is an important mesothelioma cancer cell survival protein. However, the mechanism whereby TG2 maintains mesothelioma cell survival is not well understood. We present studies showing that TG2 drives hepatocyte growth factor (HGF)-dependent MET receptor signaling to maintain the aggressive mesothelioma cancer phenotype. TG2 increases HGF and MET messenger RNA and protein levels to enhance MET signaling. TG2 inactivation reduces MET tyrosine kinase activity to reduce cancer cell spheroid formation, invasion and migration. We also confirm that HGF/MET signaling is a biologically important mediator of TG2 action. Reducing MET level using genetic methods or treatment with MET inhibitors reduces spheroid formation, invasion and migration and this is associated with reduced MEK1/2 and ERK1/2. In addition, MEK1/2 and ERK1/2 inhibitors suppress the cancer phenotype. Moreover, MET knockout mesothelioma cells form 10-fold smaller tumors compared to wild-type cells and these tumors display reduced MET, MEK1/2, and ERK1/2 activity. These findings suggest that TG2 maintains HGF and MET levels in cultured mesothelioma cells and tumors to drive HGF/MET, MEK1/2, and ERK1/2 signaling to maintain the aggressive mesothelioma cancer phenotype.


Assuntos
Fator de Crescimento de Hepatócito , Mesotelioma Maligno , Mesotelioma , Proteína 2 Glutamina gama-Glutamiltransferase , Movimento Celular , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Mesotelioma/genética , Mesotelioma/patologia , Fenótipo , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo
2.
Mol Carcinog ; 60(7): 429-439, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872411

RESUMO

Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets. Protein arginine methyltransferase 5 (PRMT5) functions in concert with the methylosome protein 50 (MEP50) cofactor to catalyze symmetric dimethylation of key arginine resides in histones 3 and 4 which modifies the chromatin environment to alter tumor suppressor and oncogene expression and enhance cancer cell survival. Our studies show that PRMT5 or MEP50 loss reduces H4R3me2s formation and that this is associated with reduced cancer cell spheroid formation, invasion, and migration. Treatment with sulforaphane (SFN), a diet-derived anticancer agent, reduces PRMT5/MEP50 level and H4R3me2s formation and suppresses the cancer phenotype. We further show that SFN treatment reduces PRMT5 and MEP50 levels and that this reduction is required for SFN suppression of the cancer phenotype. SFN treatment also reduces tumor formation which is associated with reduced PRMT5/MEP50 expression and activity. These findings suggest that SFN may be a useful mesothelioma treatment agent that operates, at least in part, via suppression of PRMT5/MEP50 function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Isotiocianatos/farmacologia , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Sulfóxidos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Anticarcinógenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Mesotelioma/metabolismo , Camundongos Endogâmicos NOD , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Vis Exp ; (167)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33586700

RESUMO

Epithelial dysregulation is a node for a variety of human conditions and ailments, including chronic wounding, inflammation, and over 80% of all human cancers. As a lining tissue, the skin epithelium is often subject to injury and has evolutionarily adapted by acquiring the cellular plasticity necessary to repair damaged tissue. Over the years, several efforts have been made to study epithelial plasticity using in vitro and ex vivo cell-based models. However, these efforts have been limited in their capacity to recapitulate the various phases of epithelial cell plasticity. We describe here a protocol for generating 3D epidermal spheroids and epidermal spheroid-derived cells from primary neonatal human keratinocytes. This protocol outlines the capacity of epidermal spheroid cultures to functionally model distinct stages of keratinocyte generative plasticity and demonstrates that epidermal spheroid re-plating can enrich heterogenous normal human keratinocytes (NHKc) cultures for integrinα6hi/EGFRlo keratinocyte subpopulations with enhanced stem-like characteristics. Our report describes the development and maintenance of a high throughput system for the study of skin keratinocyte plasticity and epidermal regeneration.


Assuntos
Técnicas de Cultura de Células/métodos , Plasticidade Celular , Células Epidérmicas/citologia , Queratinócitos/citologia , Esferoides Celulares/citologia , Células-Tronco/citologia , Biomarcadores/metabolismo , Proliferação de Células , Separação Celular , Rastreamento de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Humanos , Masculino , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA