RESUMO
Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.
Assuntos
Glucose-6-Fosfatase , Penaeidae , Animais , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Isoformas de Proteínas/metabolismoRESUMO
Crude extracts of collagenases from jumbo squid (Dosidicus gigas) hepatopancreas and sierra fish (Scomberomorus sierra) viscera were used to hydrolyse squid muscle collagen into peptides with inhibitory capacity over angiotensin I-converting enzyme (ACE) and ABTS free radicals [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)], as a measure of their antihypertensive potential and antioxidant activity, respectively. Proteins from 20 to 200 kDa were found in both enzyme extracts; however, in comparison to the jumbo squid extract (JSE), the extraction yield and specific activity of the enzymatic sierra fish extract (SFE) were ≈ 40% greater, suggesting the presence of enzymes with different collagenolytic activity. Moreover, the utilised collagen was obtained with a yield of 0.98 ± 0.09 g/100 g muscle from jumbo squid arms, which after an incubation with JSE and SFE generated peptides with different biological activity. However, the collagen hydrolysates from the enzymatic SFE contained a higher proportion of low-molecular-weight peptides than that obtained from JSE (15.2 and 7.9% of < 3 kDa peptides, respectively). Finally, the antioxidant potential and ACE-inhibitory activity were increased after hydrolysis, being the SFE the one that showed a greater increase of both biological activities (82.28% of ACE inhibition and 64% of ABTS inhibition).
RESUMO
Underutilized marine food products such as cephalopods' ink could be sources of bioactive compounds providing health benefits. This study aimed to assess the anti-proliferative and anti-inflammatory effects from Octopus vulgaris ink extracts (hexane-, ethyl acetate-, dichloromethane- (DM), and water extracts) using human colorectal (HT-29/HCT116) and breast (MDA-MB-231) cancer cells, and LPS-challenged murine RAW 264.7 cells. Except by ethyl-acetate, all of the extracts exhibited anti-proliferative effects without being cytotoxic to ARPE-19 and RAW 264.7 cells. Among DM fractions (F1/F2/F3), DM-F2 showed the highest anti-proliferative effect (LC50 = 52.64 µg/mL), inducing pro-apoptotic morphological disruptions in HCT116 cells. On RAW 264.7 cells, DM-F2 displayed the lowest nitrites reduction and up-regulation of key-cytokines from the JAK-STAT, PI3K-Akt, and IL-17 pathways. Compared to control, DM-F2 increased IL-4 and decreased NF-κB fluorometric expression in peripheral blood mononuclear cells (PBMCs). Metabolomic analysis of DM-F2 highlighted hexadecanoic acid and 1-(15-methyl-1-oxohexadecyl)-pyrrolidine as the most important metabolites. These compounds also exhibited high in silico binding affinity (-4.6 to -5.8 kcal/mol) to IL-1α, IL-1ß, and IL-2. Results suggested the joint immuno-modulatory and anti-proliferative effect derived from selected compounds of underutilized marine food products such as ink. This is the first report of such biological activities in extracts from O. vulgaris ink.
Assuntos
Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Octopodiformes/química , Animais , Citocinas/metabolismo , Células HCT116 , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metabolômica , Cloreto de Metileno/química , Camundongos , Nitritos/metabolismo , Células RAW 264.7 , Transdução de SinaisRESUMO
White shrimps, Litopenaeus vannamei, were tested in two indoor trials to determine the effect of fumonisin B1 on (i) immune response, (ii) histopathology, and, (iii) muscle proteins. Trial 1: (0, 0.5, 0.75 and 1.0µg/g of FB1 levels, 18-day duration; shrimp 5-6g) to evaluate the FB1 effect on the immune system and histopathology response. Trial 2: (0.0, 0.5, 0.75 and 1.0µg/g of FB1 levels, 16-day duration; shrimp 5-6g) to detect FB1 effect on muscle proteins. Prophenoloxidase activity was affected by all FB1 concentrations tested. Both, total haemocyte count and phenoloxidase activity decreased by the 18th day in shrimp exposed to FB1. Marked histological changes in the hepatopancreas of shrimp fed on diet containing FB1, at the all FB1 levels tested, as well as a necrotic tissue were observed. Changes in both, electrophoretic patterns and thermodynamic properties of myosin extracted from shrimp exposed to FB1 were also observed.