Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Chem Rev ; 122(1): 1052-1126, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34846124

RESUMO

Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.


Assuntos
Biocatálise , Preparações Farmacêuticas
2.
Chembiochem ; 22(4): 652-656, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33090643

RESUMO

Broad substrate tolerance and excellent regioselectivity, as well as independence from sensitive cofactors have established benzoic acid decarboxylases from microbial sources as efficient biocatalysts. Robustness under process conditions makes them particularly attractive for preparative-scale applications. The divalent metal-dependent enzymes are capable of catalyzing the reversible non-oxidative (de)carboxylation of a variety of electron-rich (hetero)aromatic substrates analogously to the chemical Kolbe-Schmitt reaction. Elemental mass spectrometry supported by crystal structure elucidation and quantum chemical calculations verified the presence of a catalytically relevant Mg2+ complexed in the active site of 2,3-dihydroxybenoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao). This unique example with respect to the nature of the metal is in contrast to mechanistically related decarboxylases, which generally have Zn2+ or Mn2+ as the catalytically active metal.


Assuntos
Aspergillus oryzae/enzimologia , Carboxiliases/química , Carboxiliases/metabolismo , Hidroxibenzoatos/metabolismo , Magnésio/metabolismo , Catálise , Cinética , Magnésio/química , Especificidade por Substrato , Termodinâmica
3.
Adv Synth Catal ; 361(11): 2402-2420, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31379472

RESUMO

The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,ß-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.

4.
Adv Synth Catal ; 360(14): 2742-2751, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30147639

RESUMO

The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2-arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an 'optimal compromise' in the reaction outcome. The biocatalytic system could be applied to a variety of 2-arylpropanals and granted access in a redox-neutral manner to enantioenriched (S)-profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT). The reaction can be performed in aqueous buffer at ambient conditions, does not rely on a sacrificial co-substrate, and requires only catalytic amounts of cofactor and a single enzyme. The high atom-efficiency was exemplified by the conversion of 75 mM of rac-2-phenylpropanal with 0.03 mol% of HLADH in the presence of ∼0.013 eq. of oxidized nicotinamide adenine dinucleotide (NAD+), yielding 28.1 mM of (S)-2-phenylpropanol in 96% ee and 26.5 mM of (S)-2-phenylpropionic acid in 89% ee, in 73% overall conversion. Isolated yield of 62% was obtained on 100 mg-scale, with intact enantiopurities.

5.
Adv Synth Catal ; 360(12): 2394-2401, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333715

RESUMO

Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity. The protocol is generally applicable to acid phosphatases and compatible with a range of diverse substrates. Preparative-scale transformations using acetyl phosphate synthesized from cheap starting materials yielded multiple grams of various sugar phosphates with up to 433 g L-1 h-1 space-time yield and 75% reduction of barium phosphate waste.

6.
Org Biomol Chem ; 16(43): 8030-8033, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30334043

RESUMO

A three-step one-pot biocatalytic cascade was designed for the enantioselective formal α-amination of hexanoic acid to l-norleucine. Regioselective hydroxylation by P450CLA peroxygenase to 2-hydroxyhexanoic acid was followed by oxidation to the ketoacid by two stereocomplementary dehydrogenases. Combination with final stereoselective reductive amination by amino acid dehydrogenase furnished l-norleucine in >97% ee.


Assuntos
Biocatálise , Caproatos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Norleucina/química , Aminação , Bactérias/enzimologia , Estereoisomerismo , Especificidade por Substrato
7.
Angew Chem Int Ed Engl ; 57(11): 2864-2868, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384246

RESUMO

Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols.


Assuntos
Escherichia coli/enzimologia , Furaldeído/análogos & derivados , Mutagênese Sítio-Dirigida , Oxirredutases/metabolismo , Compostos de Sulfidrila/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Furaldeído/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Oxirredução , Oxirredutases/genética , Mutação Puntual , Estereoisomerismo , Compostos de Sulfidrila/química
8.
Angew Chem Int Ed Engl ; 57(2): 427-430, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29125663

RESUMO

The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).

9.
Biotechnol Bioeng ; 114(10): 2187-2195, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28600898

RESUMO

The major drawback of using phosphatases for transphosphorylation reactions lies in product depletion caused by the natural hydrolytic activity of the enzymes. Variants of PhoC-Mm from Morganella morganii and NSAP-Eb from Escherichia blattae were studied for their ability to maintain a high product level in the transphosphorylation of various primary alcohols. A single amino acid exchange delivered phosphatase variant PhoC-Mm G92D, which was able to catalyze the phosphorylation of primary alcohols without any major hydrolysis of the formed phosphate esters. The mutation mostly improved the affinity of the enzyme for alcohols, while rate constants of transphosphorylation and hydrolysis were decreased, overall resulting in a superior catalytic efficiency in transphosphorylation compared to hydrolysis. The presence of residual substrate alcohol at a given concentration was crucial to suppress phosphate ester hydrolysis. The present work extends the synthetic applicability of phosphatase variants beyond the previously reported nucleosides and allows preparative-scale production of various primary phosphate esters (yields up to 42%) with high enzyme productivity (TONs up to ∼66,000). Biotechnol. Bioeng. 2017;114: 2187-2195. © 2017 Wiley Periodicals, Inc.


Assuntos
Fosfatase Ácida/química , Álcoois/química , Escherichia/enzimologia , Ésteres/síntese química , Morganella morganii/enzimologia , Fosfatos/síntese química , Fosfatase Ácida/genética , Ativação Enzimática , Mutagênese Sítio-Dirigida , Fosforilação
10.
Adv Synth Catal ; 359(6): 959-965, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28450825

RESUMO

In order to extend the applicability of the regioselective enzymatic carboxylation of phenols, the substrate scope of o-benzoic acid (de)carboxylases has been investigated towards complex molecules with an emphasis on flavouring agents and polyphenols possessing antioxidant properties. o-Hydroxycarboxylic acid products were obtained with perfect regioselectivity, in moderate to excellent yields. The applicability of this method was proven by the regioselective bio-carboxylation of resveratrol on a preparative scale with 95% yield.

11.
Adv Synth Catal ; 359(12): 2066-2075, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28713228

RESUMO

The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)-selective addition of cyanide is proposed.

12.
European J Org Chem ; 2017(9): 1262-1271, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28344504

RESUMO

We report the use of bifunctional starting materials (ketoacids) in a diastereoselective Passerini three-center-two-component reaction. Study of the reaction scope revealed the required structural features for stereoselectivity in the isocyanide addition. In this system, an interesting isomerization of the primary Passerini product - the α-carboxamido lactone - into an atypical product, an α-hydroxy imide, was found to occur under acidic conditions. Furthermore, enantioenriched Passerini products can be generated from an enantioenriched ketoacid obtained by chemoenzymatic synthesis.

13.
Molecules ; 22(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231859

RESUMO

The oxidation of alcohols to the corresponding carbonyl or carboxyl compounds represents a convenient strategy for the selective introduction of electrophilic carbon centres into carbohydrate-based starting materials. The O2-dependent oxidation of prim-alcohols by flavin-containing alcohol oxidases often yields mixtures of aldehyde and carboxylic acid, which is due to "over-oxidation" of the aldehyde hydrate intermediate. In order to directly convert alcohols into carboxylic acids, rational engineering of 5-(hydroxymethyl)furfural oxidase was performed. In an attempt to improve the binding of the aldehyde hydrate in the active site to boost aldehyde-oxidase activity, two active-site residues were exchanged for hydrogen-bond-donating and -accepting amino acids. Enhanced over-oxidation was demonstrated and Michaelis-Menten kinetics were performed to corroborate these findings.


Assuntos
Oxirredutases do Álcool/química , Álcoois/química , Ácidos Carboxílicos/química , Flavoproteínas/química , Aldeídos/química , Catálise , Domínio Catalítico , Escherichia coli , Flavinas/química , Furaldeído/análogos & derivados , Furaldeído/química , Ligação de Hidrogênio , Cinética , Oxirredução , Conformação Proteica
14.
Angew Chem Int Ed Engl ; 56(44): 13893-13897, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28857436

RESUMO

The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme-catalyzed para-carboxylation of catechols, employing 3,4-dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMNiminium species. This study reports on the in vitro reconstitution and activation of a prFMN-dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN-associated 1,3-dipolar cycloadditions in related enzymes.

15.
Biochim Biophys Acta ; 1854(8): 890-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25843773

RESUMO

Anthranoyl-CoA monooxygenase/reductase (ACMR) participates in an unusual pathway for the degradation of aromatic compounds in Azoarcus evansii. It catalyzes the monooxygenation of anthranoyl-CoA to 5-hydroxyl-2-aminobenzoyl-CoA and the subsequent reduction to the dearomatized product 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA. The two reactions occur in separate domains, termed the monooxygenase and reductase domain. Both domains were reported to utilize FAD as a cofactor for hydroxylation and reduction, respectively. We have heterologously expressed ACMR in Escherichia coli BL21 and found that the monooxygenase domain contains FAD. However, the reductase domain utilizes FMN and not FAD for the reduction of the intermediate 5-hydroxyl-2-aminobenzoyl-CoA. A homology model for the reductase domain predicted a topology similar to the Old Yellow Enzyme family, which exclusively bind FMN, in accordance with our results. Binding studies with 2-aminobenzoyl-CoA (AbCoA) and p-hydroxybenzaldehyde (pHB) as probes for the monooxygenase and reductase domain, respectively, indicated that two functionally distinct and independent active sites exist. Given the homodimeric quartenary structure of ACMR and the compact shape of the dimer as determined by small-angle X-ray scattering experiments we propose that the monooxygenase and reductase domain of opposite peptide chains are involved in the transformation of anthranoyl-CoA to 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA.


Assuntos
Azoarcus/enzimologia , Proteínas de Bactérias/química , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Oxigenases de Função Mista/química , Azoarcus/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzima A/química , Oxigenases de Função Mista/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
Chembiochem ; 17(15): 1437-41, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27223496

RESUMO

The hydrolytic dehalogenation of rac-1,3-dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec-halogen in the first hydrolytic event with pronounced R enantioselectivity. The second hydrolysis step proceeded with a regioselectivity switch at the primary position, with preference for the S enantiomer. Because of complex competition between all eight possible reactions, intermediate haloalcohols formed with moderate to good ee ((S)-4-bromobutan-2-ol: up to 87 %). Similarly, (S)-butane-1,3-diol was formed at a maximum ee of 35 % before full hydrolysis furnished the racemic diol product.


Assuntos
Hidrolases/metabolismo , Sphingomonadaceae/enzimologia , Butileno Glicóis/síntese química , Halogenação , Hidrólise , Estereoisomerismo , Especificidade por Substrato
17.
Adv Synth Catal ; 357(8): 1909-1918, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26190963

RESUMO

We report on a 'green' method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the ß-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the ß-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site.

18.
Appl Microbiol Biotechnol ; 99(16): 6617-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26153139

RESUMO

Alcohols are a rich source of compounds from renewable sources, but they have to be activated in order to allow the modification of their carbon backbone. The latter can be achieved via oxidation to the corresponding aldehydes or ketones. As an alternative to (thermodynamically disfavoured) nicotinamide-dependent alcohol dehydrogenases, alcohol oxidases make use of molecular oxygen but their application is under-represented in synthetic biotransformations. In this review, the mechanism of copper-containing and flavoprotein alcohol oxidases is discussed in view of their ability to accept electronically activated or non-activated alcohols and their propensity towards over-oxidation of aldehydes yielding carboxylic acids. In order to facilitate the selection of the optimal enzyme for a given biocatalytic application, the substrate tolerance of alcohol oxidases is compiled and discussed: Substrates are classified into groups (non-activated prim- and sec-alcohols; activated allylic, cinnamic and benzylic alcohols; hydroxy acids; sugar alcohols; nucleotide alcohols; sterols) together with suitable alcohol oxidases, their microbial source, relative activities and (stereo)selectivities.


Assuntos
Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Especificidade por Substrato
19.
Angew Chem Int Ed Engl ; 54(30): 8819-22, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095212

RESUMO

The enzymatic oxidative decarboxylation of linear short-chain fatty acids (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H as the electron donor gave the corresponding terminal C3 to C8  alkenes with product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was the construction of an efficient electron-transfer chain employing putidaredoxin CamAB in combination with NAD(P)H recycling at the expense of glucose, formate, or phosphite. This system allows for the biocatalytic production of industrially important 1-alkenes, such as propene and 1-octene, from renewable resources for the first time.


Assuntos
Alcenos/metabolismo , Ácidos Graxos/metabolismo , Oxigenases/metabolismo , Descarboxilação , Ferredoxinas/metabolismo , NAD/metabolismo , Oxirredução , Oxigênio/metabolismo , Especificidade por Substrato
20.
Chemistry ; 20(5): 1403-9, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24382795

RESUMO

To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems.


Assuntos
Hidrogênio/química , NAD/química , Oxirredutases/metabolismo , Biocatálise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Carbono/química , Oxirredução , Oxirredutases/química , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA