Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38193360

RESUMO

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Assuntos
Idade de Início , Proteína de Replicação C , Humanos , Masculino , Feminino , Proteína de Replicação C/genética , Adulto , Expansão das Repetições de DNA/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Fenótipo , Índice de Gravidade de Doença , Pré-Escolar , Progressão da Doença
2.
Mov Disord ; 39(1): 209-214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054570

RESUMO

BACKGROUND: Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date. OBJECTIVES: In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity. METHODS: Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique. RESULTS: Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (ß = 0.260, P = 0.034). CONCLUSIONS: Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time.


Assuntos
Filamentos Intermediários , Humanos , Estudos Transversais , Estudos Longitudinais , Fenótipo , Biomarcadores
3.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450567

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Síndrome , Doenças Vestibulares , Humanos , Vestibulopatia Bilateral , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética
4.
Brain ; 144(5): 1542-1550, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33969391

RESUMO

After extensive evaluation, one-third of patients affected by polyneuropathy remain undiagnosed and are labelled as having chronic idiopathic axonal polyneuropathy, which refers to a sensory or sensory-motor, axonal, slowly progressive neuropathy of unknown origin. Since a sensory neuropathy/neuronopathy is identified in all patients with genetically confirmed RFC1 cerebellar ataxia, neuropathy, vestibular areflexia syndrome, we speculated that RFC1 expansions could underlie a fraction of idiopathic sensory neuropathies also diagnosed as chronic idiopathic axonal polyneuropathy. We retrospectively identified 225 patients diagnosed with chronic idiopathic axonal polyneuropathy (125 sensory neuropathy, 100 sensory-motor neuropathy) from our general neuropathy clinics in Italy and the UK. All patients underwent full neurological evaluation and a blood sample was collected for RFC1 testing. Biallelic RFC1 expansions were identified in 43 patients (34%) with sensory neuropathy and in none with sensory-motor neuropathy. Forty-two per cent of RFC1-positive patients had isolated sensory neuropathy or sensory neuropathy with chronic cough, while vestibular and/or cerebellar involvement, often subclinical, were identified at examination in 58%. Although the sensory ganglia are the primary pathological target of the disease, the sensory impairment was typically worse distally and symmetric, while gait and limb ataxia were absent in two-thirds of the cases. Sensory amplitudes were either globally absent (26%) or reduced in a length-dependent (30%) or non-length dependent pattern (44%). A quarter of RFC1-positive patients had previously received an alternative diagnosis, including Sjögren's syndrome, sensory chronic inflammatory demyelinating polyneuropathy and paraneoplastic neuropathy, while three cases had been treated with immune therapies.


Assuntos
Polineuropatias/genética , Proteína de Replicação C/genética , Adulto , Idoso , Expansão das Repetições de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Nat Astron ; 8(5): 587-595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282476

RESUMO

The water molecule is a key ingredient in the formation of planetary systems, with the water snowline being a favourable location for the growth of massive planetary cores. Here we present Atacama Large Millimeter/submillimeter Array data of the ringed protoplanetary disk orbiting the young star HL Tauri that show centrally peaked, bright emission arising from three distinct transitions of the main water isotopologue ( H 2 16 O ). The spatially and spectrally resolved water content probes gas in a thermal range down to the water sublimation temperature. Our analysis implies a stringent lower limit of 3.7 Earth oceans of water vapour available within the inner 17 astronomical units of the system. We show that our observations are limited to probing the water content in the atmosphere of the disk, due to the high dust column density and absorption, and indicate that the main water isotopologue is the best tracer to spatially resolve water vapour in protoplanetary disks.

6.
Lancet Neurol ; 23(7): 725-739, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876750

RESUMO

Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , Diagnóstico Diferencial , Expansão das Repetições de DNA/genética
7.
EBioMedicine ; 108: 105328, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278108

RESUMO

BACKGROUND: Fuchs endothelial corneal dystrophy (FECD) is the most common repeat-mediated disease in humans. It exclusively affects corneal endothelial cells (CECs), with ≤81% of cases associated with an intronic TCF4 triplet repeat (CTG18.1). Here, we utilise optical genome mapping (OGM) to investigate CTG18.1 tissue-specific instability to gain mechanistic insights. METHODS: We applied OGM to a diverse range of genomic DNAs (gDNAs) from patients with FECD and controls (n = 43); CECs, leukocytes and fibroblasts. A bioinformatics pipeline was developed to robustly interrogate CTG18.1-spanning DNA molecules. All results were compared with conventional polymerase chain reaction-based fragment analysis. FINDINGS: Analysis of bio-samples revealed that expanded CTG18.1 alleles behave dynamically, regardless of cell-type origin. However, clusters of CTG18.1 molecules, encompassing ∼1800-11,900 repeats, were exclusively detected in diseased CECs from expansion-positive cases. Additionally, both progenitor allele size and age were found to influence the level of leukocyte-specific CTG18.1 instability. INTERPRETATION: OGM is a powerful tool for analysing somatic instability of repeat loci and reveals here the extreme levels of CTG18.1 instability occurring within diseased CECs underpinning FECD pathophysiology, opening up new therapeutic avenues for FECD. Furthermore, these findings highlight the broader translational utility of FECD as a model for developing therapeutic strategies for rarer diseases similarly attributed to somatically unstable repeats. FUNDING: UK Research and Innovation, Moorfields Eye Charity, Fight for Sight, Medical Research Council, NIHR BRC at Moorfields Eye Hospital and UCL Institute of Ophthalmology, Grantová Agentura Ceské Republiky, Univerzita Karlova v Praze, the National Brain Appeal's Innovation Fund and Rosetrees Trust.


Assuntos
Distrofia Endotelial de Fuchs , Fator de Transcrição 4 , Humanos , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/patologia , Mapeamento Cromossômico , Alelos , Especificidade de Órgãos/genética , Expansão das Repetições de Trinucleotídeos , Masculino , Instabilidade Genômica , Feminino , Repetições de Trinucleotídeos/genética , Pessoa de Meia-Idade , Idoso
8.
Nat Med ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354197

RESUMO

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions and technological limitations leading to underascertainment. Here, leveraging whole-genome sequencing data from 82,176 individuals from different populations, we found an overall disease allele frequency of REDs of 1 in 283 individuals. Modeling disease prevalence using genetic data, age at onset and survival, we show that the expected number of people with REDs would be two to three times higher than currently reported figures, indicating underdiagnosis and/or incomplete penetrance. While some REDs are population specific, for example, Huntington disease-like 2 in Africans, most REDs are represented in all broad genetic ancestries (that is, Europeans, Africans, Americans, East Asians and South Asians), challenging the notion that some REDs are found only in specific populations. These results have worldwide implications for local and global health communities in the diagnosis and counseling of REDs.

9.
Nat Commun ; 15(1): 6327, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068203

RESUMO

Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.


Assuntos
Músculo Esquelético , Expansão das Repetições de Trinucleotídeos , População Branca , Humanos , Masculino , Feminino , Adulto , Expansão das Repetições de Trinucleotídeos/genética , Pessoa de Meia-Idade , População Branca/genética , Músculo Esquelético/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Linhagem , Idoso , Adulto Jovem , Fibroblastos/metabolismo , Fibroblastos/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Adolescente , Distrofias Musculares
10.
Brain Commun ; 5(5): fcad244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810464

RESUMO

Spinocerebellar ataxias form a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive cerebellar ataxia. Their prevalence varies among populations and ethnicities. Spinocerebellar ataxia 36 is caused by a GGCCTG repeat expansion in the first intron of the NOP56 gene and is characterized by late-onset ataxia, sensorineural hearing loss and upper and lower motor neuron signs, including tongue fasciculations. Spinocerebellar ataxia 36 has been described mainly in East Asian and Western European patients and was thought to be absent in the British population. Leveraging novel bioinformatic tools to detect repeat expansions from whole-genome sequencing, we analyse the NOP56 repeat in 1257 British patients with hereditary ataxia and in 7506 unrelated controls. We identify pathogenic repeat expansions in five families (seven patients), representing the first cohort of White British descent patients with spinocerebellar ataxia 36. Employing in silico approaches using whole-genome sequencing data, we found an 87 kb shared haplotype in among the affected individuals from five families around the NOP56 repeat region, although this block was also shared between several controls, suggesting that the repeat arises on a permissive haplotype. Clinically, the patients presented with slowly progressive cerebellar ataxia with a low rate of hearing loss and variable rates of motor neuron impairment. Our findings show that the NOP56 expansion causes ataxia in the British population and that spinocerebellar ataxia 36 can be suspected in patients with a late-onset, slowly progressive ataxia, even without the findings of hearing loss and tongue fasciculation.

11.
medRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461547

RESUMO

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations we found an overall carrier frequency of REDs of 1 in 340 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that REDs are up to 3-fold more prevalent than currently reported figures. While some REDs are population-specific, e.g. Huntington's disease type 2, most REDs are represented in all broad genetic ancestries, including Africans and Asians, challenging the notion that some REDs are found only in European populations. These results have worldwide implications for local and global health communities in the diagnosis and management of REDs both at local and global levels.

12.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892228

RESUMO

A recessive Short Tandem Repeat expansion in RFC1 has been found to be associated with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS), and to be a frequent cause of late onset ataxia and sensory neuropathy. The usual procedure for sizing these expansions is based on Southern Blotting (SB), a time-consuming and a relatively imprecise technique. In this paper, we compare SB with Optical Genome Mapping (OGM), a method for detecting Structural Variants (SVs) based on the measurement of distances between fluorescently labelled probes, for the diagnosis of RFC1 CANVAS and disease spectrum. The two methods are applied to 17 CANVAS patients' blood samples and resulting sizes compared, showing a good agreement. Further, long-read sequencing is used for two patients to investigate the agreement of sizes with either SB or OGM. Our study concludes that OGM represents a viable alternative to SB, allowing for a simpler technique, a more precise sizing of the expansion and ability to expand analysis of SV in the entire genome as opposed to SB which is a locus specific method.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Humanos , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Vestibulopatia Bilateral/complicações , Vestibulopatia Bilateral/diagnóstico , Síndrome , Mapeamento Cromossômico
13.
Biomolecules ; 13(11)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002249

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is the second most common muscular dystrophy in adults, and it is associated with local D4Z4 chromatin relaxation, mostly via the contraction of the D4Z4 macrosatellite repeat array on chromosome 4q35. In this study, we aimed to investigate the use of Optical Genome Mapping (OGM) as a diagnostic tool for testing FSHD cases from the UK and India and to compare OGM performance with that of traditional techniques such as linear gel (LGE) and Pulsed-field gel electrophoresis (PFGE) Southern blotting (SB). A total of 6 confirmed and 19 suspected FSHD samples were processed with LGE and PFGE, respectively. The same samples were run using a Saphyr Genome-Imaging Instrument (1-color), and the data were analysed using custom EnFocus FSHD analysis. OGM was able to confirm the diagnosis of FSHD1 in all FSHD1 cases positive for SB (n = 17), and D4Z4 sizing highly correlated with PFGE-SB (p < 0.001). OGM correctly identified cases with mosaicism for the repeat array contraction (n = 2) and with a duplication of the D4Z4 repeat array. OGM is a promising new technology able to unravel structural variants in the genome and seems to be a valid tool for diagnosing FSHD1.


Assuntos
Distrofia Muscular Facioescapuloumeral , Adulto , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Eletroforese em Gel de Campo Pulsado , Mapeamento Cromossômico , Índia
14.
Neurology ; 100(5): e543-e554, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36289003

RESUMO

BACKGROUND AND OBJECTIVE: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult-onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the replication factor complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expand the genotypic spectrum of CANVAS by identifying sequence variants in RFC1-coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only 1 heterozygous (AAGGG)n expansion in RFC1 underwent whole-genome sequencing or whole-exome sequencing to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the effect of truncating variants on RFC1 expression, we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified 7 patients from 5 unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included the following: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6), and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. In addition, it sheds further light on the pathogenesis of RFC1 CANVAS because it supports the existence of a loss-of-function mechanism underlying this complex neurodegenerative condition.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Adulto , Humanos , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Vestibulopatia Bilateral/genética , Vestibulopatia Bilateral/diagnóstico , Doenças Vestibulares/genética , Síndrome
15.
Phys Rev Lett ; 106(1): 010501, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231726

RESUMO

A bipartite quantum channel represents the interaction between systems, generally allowing for the exchange of information. A special class of bipartite channels is the no-signaling ones, which do not allow for communication. Piani et al. [Phys. Rev. A 74, 012305 (2006)] conjectured that all no-signaling channels are mixtures of entanglement breaking and localizable channels, which require only local operations and entanglement. Here we provide the general realization scheme, and give a counterexample to the conjecture, achieving no-signaling superquantum correlations while preserving entanglement.

17.
Clin Neurophysiol ; 113(3): 367-75, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11897537

RESUMO

OBJECTIVES: To examine possible changes of excitability of the human motor system contingent upon immobilisation of two hand fingers. METHODS: Two series of 5 transcranial magnetic stimulation (TMS) sessions were carried out on different days (1, 2, 3, 4, and 7). In one series (fingers immobilised, FI), subjects wore for 4 days a device that kept immobilised the left fourth and fifth finger. In the other series (fingers free, FF), no constraining device was used. Focal TMS was applied over the right motor cortex and motor evoked potentials (MEPs) were recorded from left abductor digiti minimi (immobilised) and first dorsal interosseus (non-immobilised) muscles. Intensities of 10, 30, and 50% above the resting motor threshold (rMT), were used. RESULTS: In FI series, rMT for both muscles showed significant increase on days 3, 4, and 7 with respect to day 1. At high stimulation intensity a clear decrease of MEPs amplitude was observed on days 3 and 4 for both muscles. Since no time-related changes of peripheral (M-wave) and spinal (F-wave) excitability were noted, MEPs and rMT changes are likely to have a cortical origin. In FF series, no changes of excitability were detected. CONCLUSIONS: Sensorimotor restriction of two fingers induces an early decrease of excitability, possibly at cortical level, which involves not only the immobilised muscle but also muscles with purportedly overlapping neural representations.


Assuntos
Dedos/fisiologia , Imobilização/fisiologia , Córtex Motor/fisiologia , Adulto , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Campos Eletromagnéticos , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Limiar Sensorial , Nervo Ulnar/fisiologia
18.
Neuroimage ; 26(3): 755-63, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15955484

RESUMO

Neurophysiological and neuroimaging studies in the human and the monkey brain indicate that links between action observation and execution are much tighter than previously believed. Indeed, the mere observation of movements performed by other individuals brings about a clear increase in activity in specific fronto-parietal neural networks (mirror system). Here, we report a series of four single-pulse transcranial magnetic stimulation studies of the motor system, which show that observation of index and little finger movements brings about a facilitation of potentials recorded from muscles that would be involved in the actual execution of the observed action. Remarkably, however, a clear representational selectivity was found also during observation of bio-mechanically impossible index or little finger movements. Thus, in movement observation tasks, the human cortico-spinal system reacts similarly to the vision of bio-mechanically possible and impossible movements but it is able to detect which muscle would be involved in the actual execution of the observed movement. Importantly, this system may be more related to coding body part movements than precisely simulating their execution.


Assuntos
Fenômenos Biomecânicos , Córtex Cerebral/fisiologia , Movimento/fisiologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Adulto , Imagem Corporal , Campos Eletromagnéticos , Eletromiografia , Feminino , Dedos/inervação , Dedos/fisiologia , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Lobo Parietal/fisiologia
19.
Neurology ; 60(12): 1998-9, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12821752

RESUMO

The effect of short-term light deprivation on tactile spatial acuity was evaluated by asking 28 adult humans to perform a grating orientation task. The 14 subjects who were kept for 90 minutes in complete dark showed, immediately after deprivation, a reversible improvement of tactile spatial acuity. No acuity change was observed in the 14 nondeprived subjects. Results indicate that even a short-term visual deprivation may disclose highly dynamic plastic interactions between visual and tactile systems.


Assuntos
Percepção de Forma/fisiologia , Privação Sensorial/fisiologia , Limiar Sensorial/fisiologia , Tato/fisiologia , Adaptação Fisiológica , Adulto , Escuridão , Feminino , Dedos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Exp Brain Res ; 150(2): 222-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12677319

RESUMO

We evaluated motor evoked potentials (MEPs) and duration of the cortical silent period (CSP) from the right first dorsal interosseous (FDI) muscle to transcranial magnetic stimulation (TMS) of the left motor cortex in ten healthy subjects performing different manual tasks. They abducted the index finger alone, pressed a strain gauge with the thumb and index finger in a pincer grip, and squeezed a 4-cm brass cylinder with all digits in a power grip. The level of FDI EMG activity across tasks was kept constant by providing subjects with acoustic-visual feedback of their muscle activity. The TMS elicited larger amplitude FDI MEPs during pincer and power grip than during the index finger abduction task, and larger amplitude MEPs during pincer gripping than during power gripping. The CSP was shorter during pincer and power grip than during the index finger abduction task and shorter during power gripping than during pincer gripping. These results suggest excitatory and inhibitory task-dependent changes in the motor cortex. Complex manual tasks (pincer and power gripping) elicit greater motor cortical excitation than a simple task (index finger abduction) presumably because they activate multiple synergistic muscles thus facilitating corticomotoneurons. The finger abduction task probably yielded greater motor cortical inhibition than the pincer and power tasks because muscles uninvolved in the task activated the cortical inhibitory circuit. Increased cortical excitatory and inhibitory functions during precision tasks (pincer gripping) probably explain why MEPs have larger amplitudes and CSPs have longer durations during pincer gripping than during power gripping.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Inibição Neural/fisiologia , Adulto , Análise de Variância , Fenômenos Eletromagnéticos/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA