RESUMO
Macrophytes root functional traits (RFTs) play central roles in the cycling of aquatic contaminants, and there is evidence that emerged macrophytes differ in macronutrients (N and P) and heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) abatement due to difference in RFTs. However, it remains ambiguous what root type of emerged macrophytes and their RFTs play more significant roles in the mineralization and removal of nutrients and heavy metals in aquatic systems. There is a clear need of intensive investigation on fibrous- and thick-root emerged macrophytes and their diverse RFTs in previous literatures to identify appropriate plants for phytoremediation technology. Morphological, physiological, anatomical, and symbiotic RFTs of fibrous-root emerged macrophytes favour the nutrients and heavy metals uptake. Thick-root emerged macrophytes with greater root rhizomes, lignifications and suberization illustrate tolerance under higher stress. Besides higher removal abilities of fibrous-root macrophytes, their limited lifespan and stress tolerance are the challenges for long-term removal of metals. Thus, it is still infancy to wrap up at once that the fibrous-root macrophytes and their RFTs are equally efficient for removal of heavy metals from aquatic ecosystems. Several advance techniques include cisgenesis intragenesis, symbiotic endophytes, and plant-harboring microbes are emerging to improve the RFTs of plants. These techniques need to be employed in emerged macrophytes to achieve desirable RFTs and targets. Still, these macrophytes require advanced studies on emerging contaminants, such as pharmaceutical and personal care products, organic carbon stability, and mitigation of greenhouse gases emission.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Biodegradação Ambiental , Ecossistema , NutrientesRESUMO
Natural zeolite has been recognized as a useful adsorbent for wastewater treatment for removing cations. Natural zeolite is a kind of porous material with large specific surface area but limited adsorption capacity. In recent years, emphasis has been given to prepare the surface modified zeolite using various procedures to enhance the potential of zeolite for pollutants. Modification treatment for zeolite can greatly change surface chemistry and pore structure. The article describes various modification methods of zeolite, and introduces the removal mechanisms of common pollutants such as ammonium, phosphorus and heavy metals. In addition, this review paper intends to present feasibility of applying modified zeolite to constructed wetlands which will be beneficial to achieve higher removal effect.
Assuntos
Fósforo/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Áreas Alagadas , Zeolitas/químicaRESUMO
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Assuntos
Poluentes Ambientais , Águas Residuárias , Carbono , Poluentes Ambientais/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Áreas AlagadasRESUMO
Advancements in the design and technology of constructed wetlands for efficient removal of wastewater contaminants are ever in progress to develop situation-based economical systems. Here, we entrenched two horizontal sub-surface flow constructed wetlands (HSFCW) with either chemical, viz. limestone (HSFCW-LS) or organic, viz. sawdust (HSFCW-SD) substrates, and compared them with biological method, viz. growing of water spinach in floating-bed-constructed wetland (FBCW-WS) to enhance the performance of CWs. Same sewage wastewater was used as influent in each fortified CW replicated thrice. Sewage was replaced weekly, for a total of 12 weeks of experimentation. Sampling of raw sewage from influent was undertaken at the inlet in the beginning, and that of treated effluent from the outlet after a week of treatments. Quality of raw sewage used weekly during experimentation remained almost uniform and near to the wastewater standards. Cumulative data of treated wastewater depicted that the FBCW-WS achieved the highest performance in the removal of total nitrogen (TN), [Formula: see text]-N, and total phosphorus (TP) with average removal efficiencies of 75.9, 90.5, and 94.3%, respectively. Whereas, HSFCW-SD performed better for [Formula: see text]-N, FC, and TSS with corresponding removal efficiency of 77.5, 64.3, and 74.2% while HSFCW-LS showed average performance. This study concludes that performance of biological method of macrophyte cultivation (FBCW-WS) is significantly superior to chemical and organic substrates, so it could be more effective, economical, and sustainable approach for sewage treatment.