RESUMO
Receptors selective for anions in aqueous media are a crucial component in the detection of anions for biological and environmental applications. Recent sensor designs have taken advantage of systems known to aggregate in solution, eliciting a fluorescent response. Herein, we demonstrate a chloride-selective fluorescent response of receptor 1(+), based on our well-established class of 2,6-bis(2-anilinoethynyl)pyridine bisureas. The fluorescence intensity ratio of 1(+)·Cl(->) aggregates in water is four times larger than the next most fluorescent anion complex, 1(+)·ClO4(->). In addition, (1)H NMR spectroscopic titrations demonstrate 1(+) binds chloride more strongly than other biologically relevant anions in solutions of both DMSO-d6 and 50/50 DMSO-d6/MeCN-d3.
Assuntos
Técnicas de Química Analítica/instrumentação , Cloretos/análise , Água/química , Cloretos/química , Conformação Molecular , Espectrometria de FluorescênciaRESUMO
A variety of metal oxide films (InGaOx, AlOx, "HafSOx") prepared from aqueous solutions were found to have non-uniform electron density profiles using X-ray reflectivity. The inhomogeneity in HafSOx films (Hf(OH)4-2x-2y(O2)x(SO4)y·zH2O), which are currently under investigation as inorganic resists, were studied in more detail by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and medium-energy ion scattering (MEIS). The HAADF-STEM images show a greater concentration of heavy atoms near the surface of a single-layer film. MEIS data confirm the aggregation of Hf at the film surface. The denser "crust" layer in HafSOx films may directly impact patterning resolution. More generally, the phenomenon of surface-layer inhomogeneity in solution-deposited films likely influences film properties and may have consequences in other thin-film systems under investigation as resists, dielectrics, and thin-film transistor components.
RESUMO
High-resolution transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDS) chemical mapping have been used to examine key processing steps that enable sub-20-nm lithographic patterning of the material Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx). Results reveal that blanket films are smooth and chemically homogeneous. Upon exposure with an electron beam, the films become insoluble in aqueous tetramethylammonium hydroxide [TMAH(aq)]. The mobility of sulfate in the exposed films, however, remains high, because it is readily exchanged with hydroxide from the TMAH(aq) solution. Annealing the films after soaking in TMAH(aq) results in the formation of a dense hafnium hydroxide oxide material that can be converted to crystalline HfO2 with a high electron-beam dose. A series of 9 nm lines is written with variable spacing to investigate the cross-sectional shape of the patterned lines and the residual material found between them.