Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mar Drugs ; 21(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367675

RESUMO

The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents.


Assuntos
Anti-Infecciosos , Pele , Animais , Pele/metabolismo , Anti-Infecciosos/metabolismo , Antibacterianos/química , Muco/química , Bactérias , Extratos Vegetais/análise
2.
Fish Shellfish Immunol ; 124: 118-133, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367372

RESUMO

The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Vírus de RNA , Vírus de RNA , Tilápia , Animais , Vírus de DNA , Humanos , Vírus de RNA/fisiologia
3.
Mar Drugs ; 20(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35736166

RESUMO

The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal "The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases".


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Organismos Aquáticos/química , Doenças Transmissíveis/tratamento farmacológico , Humanos , Sistema Imunitário
4.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639146

RESUMO

The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9-30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9-30 is mainly disordered. We attempted to improve the affinity of HPr9-30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9-30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Histidina/metabolismo , Mutação , Fragmentos de Peptídeos/farmacologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Histidina/química , Fragmentos de Peptídeos/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Staphylococcus aureus/metabolismo
5.
Mar Drugs ; 17(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717094

RESUMO

Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71⁻100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71⁻100 with different glycerophospholipid vesicles. At acidic pH, Nkl71⁻100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71⁻100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71⁻100 is shown as a promising broad-spectrum antiviral candidate.


Assuntos
Antivirais/farmacologia , Linguados , Fragmentos de Peptídeos/farmacologia , Proteolipídeos/química , Proteolipídeos/farmacologia , Rhabdoviridae/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antivirais/química , Linhagem Celular , Cyprinidae , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/virologia , Concentração de Íons de Hidrogênio , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Rhabdoviridae/fisiologia , Viremia/tratamento farmacológico , Viremia/virologia , Replicação Viral/efeitos dos fármacos
6.
PLoS Pathog ; 12(6): e1005699, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27351838

RESUMO

TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Infecções por Rhabdoviridae/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Autofagia/fisiologia , Western Blotting , Modelos Animais de Doenças , Imunofluorescência , Organismos Geneticamente Modificados , Reação em Cadeia da Polimerase , Rhabdoviridae/imunologia , Replicação Viral/fisiologia , Peixe-Zebra
7.
Fish Shellfish Immunol ; 39(2): 285-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24830773

RESUMO

The effect of ß-glucan as a feed additive on the serum and gene profile of C-reactive protein (CRP) and complement acute phase responses was ascertained in common carp Cyprinus carpio. In addition effects of subsequent intraperitoneal injections of pathogen-associated molecular patterns (PAMPs), i.e. LPS or poly(I:C), to mimic bacterial or viral infection respectively, were studied. Carp were first orally fed with ß-glucan (MacroGard®) with a daily ß-glucan intake of 6 mg per kg body weight or with control food for 25 days and then injected with PBS containing either LPS (4 mg/kg) or poly(I:C) (5 mg/kg) or PBS alone. Fish were sampled during the 25 days of the feeding period and up to 7 days post-PAMPs injections for serum and liver, head kidney and mid-gut tissues. Oral administration of ß-glucan for 25 days significantly increased serum CRP levels and alternative complement activity (ACP). In addition, the subsequent LPS and poly(I:C) challenges significantly affected CRP and complement related gene expression profiles (crp1, crp2, c1r/s, bf/c2, c3 and masp2), with the greatest effects observed in the ß-glucan fed fish. However, in fish fed ß-glucan the PAMPs injections had less effects on CRP levels and complement activity in the serum than in control fed fish, suggesting that the 25 days of ß-glucan immunostimulation was sufficient enough to reduce the effects of LPS and poly(I:C) injections. Results suggest that MacroGard® stimulated CRP and complement responses to PAMPs immunological challenges in common carp thus highlighting the beneficial ß-glucan immunostimulant properties.


Assuntos
Reação de Fase Aguda/metabolismo , Proteína C-Reativa/metabolismo , Carpas/imunologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , beta-Glucanas/farmacologia , Análise de Variância , Animais , Proteína C-Reativa/genética , Via Alternativa do Complemento/imunologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Fish Shellfish Immunol ; 36(2): 494-502, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370748

RESUMO

We have previously observed that in common carp (Cyprinus carpio), administration of ß-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through ß-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by ß-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with ß-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from ß-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from ß-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after ß-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that ß-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.


Assuntos
Carpas , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Resistência a Myxovirus/genética , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , beta-Glucanas/imunologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/imunologia , Dieta/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Indutores de Interferon/farmacologia , Dados de Sequência Molecular , Proteínas de Resistência a Myxovirus/metabolismo , Alinhamento de Sequência/veterinária , Receptor 3 Toll-Like/genética
9.
Fish Shellfish Immunol ; 34(3): 819-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291104

RESUMO

The effect of ß-glucans as feed additive on the profile of C-reactive protein (CRP) and complement acute phase responses was studied in common carp Cyprinus carpio after exposition to a bacterial infection with Aeromonas salmonicida. Carp were orally administered with ß-glucan (MacroGard®) for 14 days with a daily ß-glucan intake of 6 mg per kg body weight. Fish were then intraperitoneally injected with either PBS or 1 × 108 bacteria per fish and sampled at time 0, 6, 12, 24, 48, 72, 96 and 120 h post-injection (p.i.) for serum and head kidney, liver and mid-gut tissues. CRP levels and complement activity were determined in the serum samples whilst the gene expression profiles of CRP and complement related genes (crp1, crp2, c1r/s, bf/c2, c3 and masp2) were analysed in the tissues by quantitative PCR. Results obtained showed that oral administration of ß-glucan for 14 days significantly increased serum CRP levels up to 2 fold and serum alternative complement activity (ACP) up to 35 fold. The bacterial infection on its own (i.e. not combined with a ß-glucan feeding) did have significant effects on complement response whilst CRP was not detectably induced during the carp acute phase reaction. However, the combination of the infection and the ß-glucan feeding did show significant effects on both CRP and complement profiles with higher serum CRP levels and serum ACP activity in the ß-glucan fed fish than in the control fed fish. In addition, a distinct organ and time dependent expression profile pattern was detected for all the selected genes: a peak of gene expression first occurred in the head kidney tissue (6 h p.i. or 12 h p.i.), then an up-regulation in the liver several hours later (24 h p.i.) and finally up- or down-regulations in the mid-gut at 24 h p.i. and 72 h p.i. In conclusion, the results of this study suggest that MacroGard® stimulated CRP and complement responses to A. salmonicida infection in common carp.


Assuntos
Reação de Fase Aguda/veterinária , Proteína C-Reativa/metabolismo , Carpas , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , beta-Glucanas/imunologia , Reação de Fase Aguda/imunologia , Reação de Fase Aguda/microbiologia , Aeromonas salmonicida/imunologia , Animais , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Injeções Intraperitoneais/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária
10.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36987172

RESUMO

Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings.

11.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177014

RESUMO

The use of diverse Ag-based nanoparticulated forms has shown promising results in controlling viral propagation. In this study, a commercial nanomaterial consisting of ceramic-coated silver nanoparticles (AgNPs) was incorporated into thermoplastic polyurethane (TPU) plates using an industrial protocol, and the surface composition, ion-release dynamics and viricidal properties were studied. The surface characterization by FESEM-EDX revealed that the molar composition of the ceramic material was 5.5 P:3.3 Mg:Al and facilitated the identification of the embedded AgNPs (54.4 ± 24.9 nm). As determined by ICPMS, the release rates from the AgNP-TPU into aqueous solvents were 4 ppm/h for Ag and Al, and 28.4 ppm/h for Mg ions. Regarding the biological assays, the AgNP-TPU material did not induce significant cytotoxicity in the cell lines employed. Its viricidal activity was characterized, based on ISO 21702:2019, using the Spring viraemia of carp virus (SVCV), and then tested against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The results demonstrated that AgNP-TPU materials exhibited significant (75%) and direct antiviral activity against SVCV virions in a time- and temperature-dependent manner. Similar inhibition levels were found against SARS-CoV-2. These findings show the potential of AgNP-TPU-based materials as a supporting strategy to control viral spread.

12.
Fish Shellfish Immunol ; 32(6): 1051-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406448

RESUMO

The objective of the present study was to determine the action of ß-glucans as feed additives on the gene expression profile of some inflammatory-related cytokines from common carp (Cyprinus carpio L.) during the early stages of a non-lethal bacterial infection with Aeromonas salmonicida. ß-glucan (MacroGard(®)), was administered daily to carp (6 mg per kg body weight) in the form of supplemented commercial food pellets for 14 days prior to infection. Control and treated fish were then intraperitoneally injected with PBS or 4×10(8) bacteria per fish and were sampled at time 0 and 6h, 12h, 1 day, 3 days and 5 days post-injection. Head kidney and gut were collected and the gene expression patterns for tnfα1, tnfα2, il1ß, il6 and il10 were analyzed by quantitative PCR. Results obtained showed that treatment with ß-glucans generally down-regulated the expression of all measured genes when compared to their corresponding controls. After injection, highest changes in the gene expression levels were obtained at 6h; particularly, in head kidney there was higher up-regulation of tnfa1 and tnfa2 in infected fish fed ß-glucans in comparison to control feed; however, in gut there was a significant down-regulation of tnfα1, tnfα2, il1ß and il6 in infected fish fed ß-glucans. Analysis of carp specific antibodies against A. salmonicida 30 days after injection revealed their levels were reduced in the infected ß-glucan group. In conclusion, a diet supplemented with ß-glucan (MacroGard(®)) reduced the gene expression levels of some inflammation-related cytokines in common carp. Such a response appears to be dependent of organ studied and therefore the immunostimulant may be preventing an acute and potential dangerous response in gut, whilst enhancing the inflammatory response in head kidney when exposed to A. salmonicida.


Assuntos
Carpas/imunologia , Suplementos Nutricionais , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/veterinária , beta-Glucanas , Adjuvantes Imunológicos , Aeromonas salmonicida/imunologia , Animais , Anticorpos Antibacterianos/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Rim Cefálico/imunologia , Intestinos/imunologia , Fatores de Tempo , beta-Glucanas/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-36360660

RESUMO

In the context of ongoing and future pandemics, non-pharmaceutical interventions are critical in reducing viral infections and the emergence of new antigenic variants while the population reaches immunity to limit viral transmission. This study provides information on efficient and fast methods of disinfecting surfaces contaminated with different human coronaviruses (CoVs) in healthcare settings. The ability to disinfect three different human coronaviruses (HCoV-229E, MERS-CoV, and SARS-CoV-2) on dried surfaces with light was determined for a fully characterized pulsed-xenon ultraviolet (PX-UV) source. Thereafter, the effectiveness of this treatment to inactivate SARS-CoV-2 was compared to that of conventional low-pressure mercury UVC lamps by using equivalent irradiances of UVC wavelengths. Under the experimental conditions of this research, PX-UV light completely inactivated the CoVs tested on solid surfaces since the infectivity of the three CoVs was reduced up to 4 orders of magnitude by PX-UV irradiation, with a cumulated dose of as much as 21.162 mJ/cm2 when considering all UV wavelengths (5.402 mJ/cm2 of just UVC light). Furthermore, continuous irradiation with UVC light was less efficient in inactivating SARS-CoV-2 than treatment with PX-UV light. Therefore, PX-UV light postulates as a promising decontamination measure to tackle the propagation of future outbreaks of CoVs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Raios Ultravioleta , Xenônio , Pandemias/prevenção & controle , Desinfecção/métodos
14.
Front Immunol ; 13: 787021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173716

RESUMO

Vaccination is the best form of protecting fish against viral diseases when the pathogen cannot be contained by biosecurity measures. Vaccines based on live attenuated viruses seem to be most effective for vaccination against challenging pathogens like Cyprinid herpesvirus 3. However, there are still knowledge gaps how these vaccines effectively protect fish from the deadly disease caused by the epitheliotropic CyHV-3, and which aspects of non-direct protection of skin or gill integrity and function are important in the aquatic environment. To elucidate some elements of protection, common carp were vaccinated against CyHV-3 using a double deletion vaccine virus KHV-T ΔDUT/TK in the absence or presence of a mix of common carp beta-defensins 1, 2 and 3 as adjuvants. Vaccination induced marginal clinical signs, low virus load and a minor upregulation of cd4, cd8 and igm gene expression in vaccinated fish, while neutralisation activity of blood serum rose from 14 days post vaccination (dpv). A challenge infection with CyHV-3 induced a severe disease with 80-100% mortality in non-vaccinated carp, while in vaccinated carp, no mortality was recorded and the virus load was >1,000-fold lower in the skin, gill and kidney. Histological analysis showed strongest pathological changes in the skin, with a complete destruction of the epidermis in non-vaccinated carp. In the skin of non-vaccinated fish, T and B cell responses were severely downregulated, inflammation and stress responses were increased upon challenge, whereas vaccinated fish had boosted neutrophil, T and B cell responses. A disruption of skin barrier elements (tight and adherence junction, desmosomes, mucins) led to an uncontrolled increase in skin bacteria load which most likely exacerbated the inflammation and the pathology. Using a live attenuated virus vaccine, we were able to show that increased neutrophil, T and B cell responses provide protection from CyHV-3 infection and lead to preservation of skin integrity, which supports successful protection against additional pathogens in the aquatic environment which foster disease development in non-vaccinated carp.


Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesviridae/imunologia , Vacinas Virais/imunologia , Animais , Carpas , Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Vacinação , Vacinas Atenuadas/imunologia , Vacinas Virais/genética
15.
Biology (Basel) ; 10(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33498981

RESUMO

Recent studies suggest that short pentraxins in fish might serve as biomarkers for not only bacterial infections, as in higher vertebrates including humans, but also for viral ones. These fish orthologs of mammalian short pentraxins are currently attracting interest because of their newly discovered antiviral activity. In the present work, the modulation of the gene expression of all zebrafish short pentraxins (CRP-like proteins, CRP1-7) was extensively analyzed by quantitative polymerase chain reaction. Initially, the tissue distribution of crp1-7 transcripts and how the transcripts varied in response to a bath infection with the spring viremia of carp virus, were determined. The expression of crp1-7 was widely distributed and generally increased after infection (mostly at 5 days post infection), except for crp1 (downregulated). Interestingly, several crp transcription levels significantly increased in skin. Further assays in mutant zebrafish of recombinant activation gene 1 (rag1) showed that all crps (except for crp2, downregulated) were already constitutively highly expressed in skin from rag1 knockouts and only increased moderately after viral infection. Similar results were obtained for most mx isoforms (a reporter gene of the interferon response), suggesting a general overcompensation of the innate immunity in the absence of the adaptive one.

16.
Vaccines (Basel) ; 9(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960187

RESUMO

Viral nervous necrosis (VNN) caused by the nervous necrosis virus (NNV) affects a broad range of primarily marine fish species, with mass mortality rates often seen among larvae and juveniles. Its genetic diversification may hinder the effective implementation of preventive measures such as vaccines. The present study describes different inactivation procedures for developing an inactivated vaccine against a new NNV isolate confirmed to possess deadly effects upon the European seabass (Dicentrarchus labrax), an important Mediterranean farmed fish species that is highly susceptible to this disease. First, an NNV isolate from seabass adults diagnosed with VNN was rescued and the sequences of its two genome segments (RNA1 and RNA2) were classified into the red-spotted grouper NNV (RGNNV) genotype, closely clustering to the highly pathogenic 283.2009 isolate. The testing of different inactivation procedures revealed that the virus particles of this isolate showed a marked resistance to heat (for at least 60 °C for 120 min with and without 1% BSA) but that they were fully inactivated by 3 mJ/cm2 UV-C irradiation and 24 h 0.2% formalin treatment, which stood out as promising NNV-inactivation procedures for potential vaccine candidates. Therefore, these procedures are feasible, effective, and rapid response strategies for VNN control in aquaculture.

17.
Biochim Biophys Acta Gen Subj ; 1865(12): 130015, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537288

RESUMO

BACKGROUND: The phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes. METHODS: We obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR). RESULTS: Secondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules. CONCLUSIONS: Although HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity. GENERAL SIGNIFICANCE: HPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.


Assuntos
Proteínas de Bactérias , Histidina , Proteínas Serina-Treonina Quinases , Espalhamento a Baixo Ângulo
18.
Pharmaceutics ; 13(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34834260

RESUMO

Poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) of 119 and 139 molecular weights (P119 and P139, respectively) were electrospun to evaluate the resulting fibers as a topical delivery vehicle for (L-)menthol. Thus, electrospinning parameters were optimized for the production of uniform bead-free fibers from 12% w/w PMVEMA (±2.3% w/w menthol) solutions, and their morphology and size were characterized by field emission scanning electron microscopy (FESEM). The fibers of P119 (F119s) and P139 (F139s) showed average diameter sizes of approximately 534 and 664 nm, respectively, when unloaded, and 837 and 1369 nm when loaded with menthol. The morphology of all types of fibers was cylindrical except for F139s, which mostly displayed a double-ribbon-like shape. Gas chromatography-mass spectrometry (GC-MS) analysis determined that not only was the menthol encapsulation efficiency higher in F139s (92% versus 68% in F119s) but also that its stability over time was higher, given that in contrast with F119s, no significant losses in encapsulated menthol were detected in the F139s after 10 days post-production. Finally, in vitro biological assays showed no significant induction of cytotoxicity for any of the experimental fibers or in the full functionality of the encapsulated menthol, as it achieved equivalent free-menthol levels of activation of its specific receptor, the (human) transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8).

19.
Nanomaterials (Basel) ; 10(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872555

RESUMO

Among the large number of methods to fabricate nanofibers[…] .

20.
Cells ; 9(7)2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635598

RESUMO

The SARS-CoV-2 pandemic necessitates a review of the molecular mechanisms underlying cellular infection by coronaviruses, in order to identify potential therapeutic targets against the associated new disease (COVID-19). Previous studies on its counterparts prove a complex and concomitant interaction between coronaviruses and autophagy. The precise manipulation of this pathway allows these viruses to exploit the autophagy molecular machinery while avoiding its protective apoptotic drift and cellular innate immune responses. In turn, the maneuverability margins of such hijacking appear to be so narrow that the modulation of the autophagy, regardless of whether using inducers or inhibitors (many of which are FDA-approved for the treatment of other diseases), is usually detrimental to viral replication, including SARS-CoV-2. Recent discoveries indicate that these interactions stretch into the still poorly explored noncanonical autophagy pathway, which might play a substantial role in coronavirus replication. Still, some potential therapeutic targets within this pathway, such as RAB9 and its interacting proteins, look promising considering current knowledge. Thus, the combinatory treatment of COVID-19 with drugs affecting both canonical and noncanonical autophagy pathways may be a turning point in the fight against this and other viral infections, which may also imply beneficial prospects of long-term protection.


Assuntos
Autofagia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Betacoronavirus/classificação , Betacoronavirus/fisiologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA