Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655898

RESUMO

Warfarin dosing remains challenging due to substantial inter-individual variability, which can lead to unsafe or ineffective therapy with standard dosing. Model-informed precision dosing (MIPD) can help individualize warfarin dosing, requiring the selection of a suitable model. For models developed from clinical data, the dependence on the study design and population raises questions about generalizability. Quantitative system pharmacology (QSP) models promise better extrapolation abilities; however, their complexity and lack of validation on clinical data raise questions about applicability in MIPD. We have previously derived a mechanistic warfarin/international normalized ratio (INR) model from a blood coagulation QSP model. In this article, we evaluated the predictive performance of the warfarin/INR model in the context of MIPD using an external dataset with INR data from patients starting warfarin treatment. We assessed the accuracy and precision of model predictions, benchmarked against an empirically based reference model. Additionally, we evaluated covariate contributions and assessed the predictive performance separately in the more challenging outpatient data. The warfarin/INR model performed comparably to the reference model across various measures despite not being calibrated with warfarin initiation data. Including CYP2C9 and/or VKORC1 genotypes as covariates improved the prediction quality of the warfarin/INR model, even after assimilating 4 days of INR data. The outpatient INR exhibited higher unexplained variability, and predictions slightly exceeded observed values, suggesting that model adjustments might be necessary when transitioning from an inpatient to an outpatient setting. Overall, this research underscores the potential of QSP-derived models for MIPD, offering a complementary approach to empirical model development.

2.
CPT Pharmacometrics Syst Pharmacol ; 12(4): 432-443, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36866520

RESUMO

Quantitative systems pharmacology (QSP) models integrate comprehensive qualitative and quantitative knowledge about pharmacologically relevant processes. We previously proposed a first approach to leverage the knowledge in QSP models to derive simpler, mechanism-based pharmacodynamic (PD) models. Their complexity, however, is typically still too large to be used in the population analysis of clinical data. Here, we extend the approach beyond state reduction to also include the simplification of reaction rates, elimination of reactions, and analytic solutions. We additionally ensure that the reduced model maintains a prespecified approximation quality not only for a reference individual but also for a diverse virtual population. We illustrate the extended approach for the warfarin effect on blood coagulation. Using the model-reduction approach, we derive a novel small-scale warfarin/international normalized ratio model and demonstrate its suitability for biomarker identification. Due to the systematic nature of the approach in comparison with empirical model building, the proposed model-reduction algorithm provides an improved rationale to build PD models also from QSP models in other applications.


Assuntos
Farmacologia , Varfarina , Humanos , Varfarina/farmacologia , Farmacologia em Rede , Modelos Biológicos , Coagulação Sanguínea , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA