RESUMO
In brief: The localization and abundance of the sperm BSP proteins correlate with in vitro fertility in domestic bulls used in artificial insemination service. Abstract: Binder of sperm (BSP) proteins, secreted mainly by the accessory sex glands, are the major protein family present in bovine seminal plasma and on the sperm surface after ejaculation. In vivo, BSP proteins facilitate sperm capacitation and sperm reservoir formation; however, their impact on sperm function within the in vitro systems is less clear. Therefore, this biomarker-based study aimed to characterize the localization and abundance of BSP proteins from in vitro processed frozen-thawed bovine spermatozoa. Using image-based flow cytometry and Western blotting, BSP protein localization, abundance, membrane and acrosomal integrity were investigated in the supernatant (nonmotile) and pellet (motile) fractions of gradient-separated bull spermatozoa. Spermatozoa from the supernatant fraction had high enrichment of all BSP proteins investigated (BSP1, BSP3, BSP5; P < 0.05) when compared to the pellet fraction. In the pellet fraction, BSP1 and BSP3 bound predominately to the acrosomal region, whereas BSP5 had a high affinity for the midpiece. However, in the supernatant fraction, BSP proteins predominately coated the entire sperm surface resulting in the loss of regional specificity. High BSP protein abundance in the spermatozoa also correlated with acrosome and membrane damage. Whereas a high abundance of BSP5 correlated with low embryo cleavage rates, high abundance of BSP1 on the sperm head coincided with a high blastocyst rate. Therefore, changes in the quantity and localization of specific BSP proteins could act as potential biomarkers of sperm quality and fertility.
Assuntos
Sêmen , Proteínas do Espermatozoide , Animais , Bovinos , Masculino , Espermatozoides/metabolismo , Congelamento , Proteínas/metabolismoRESUMO
Existing research has primarily focused on investigating the impacts of the maternal environment, female fertility phenotype, and genetics on pregnancy loss in dairy cattle. Recently, attention has been directed toward understanding the role the sire has on embryo quality and viability. Studies have shown there is a paternal influence on early pregnancy loss, but the specific mechanisms impacting pregnancy establishment and maintenance remain unclear. Despite clear differences that sires have on pregnancy outcomes, there is a lack of evidence regarding specifically how sires influence pregnancy. Sperm characteristics, such as motility, concentration, and morphology, have been extensively studied, but further research is needed to understand what makes one sire more or less fertile than another sire and how this affects pregnancy. To effectively address pregnancy loss, a deeper understanding of the processes involved from fertilisation to blastocyst formation is essential, particularly for understanding early pregnancy loss.
Assuntos
Aborto Espontâneo , Gravidez , Humanos , Bovinos , Animais , Masculino , Feminino , Inseminação Artificial/veterinária , Sêmen , Fertilidade , Desenvolvimento Embrionário/genéticaRESUMO
Context Sires differ in their ability to produce viable blastocysts, yet our understanding of the cellular mechanisms regulated by the sire during early embryo development is limited. Aims The first aim was to characterise autophagy and reactive oxygen species (ROS) in embryos produced by high and low performing sires under normal and stress culture conditions. The second aim was to evaluate DNA damage and lipid peroxidation as mechanisms that may be impacted by increased cellular stress, specifically oxidative stress. Methods Embryos were produced using four high and four low performing sires based on their ability to produce embryos. Autophagy and ROS were measured throughout development. To evaluate oxidative stress response, autophagy, and ROS were measured in 2-6 cell embryos exposed to heat stress. To understand how cellular stress impacts development, DNA damage and lipid peroxidation were assessed. Key results Under normal conditions, embryos from low performing sires had increased ROS and autophagy. Under heat stress, embryos from low performing sires had increased ROS, yet those from high performing sires had increased autophagy. There was no difference in DNA damage or lipid peroxidation. Conclusions Results suggest that embryos from low performing sires may begin development under increased cellular stress, and autophagy potentially increases to mitigate the impacts of stress. Implications There is potential for improving embryonic competence through selection of sires with lower stress-related markers.
Assuntos
Autofagia , Dano ao DNA , Desenvolvimento Embrionário , Peroxidação de Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Bovinos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Peroxidação de Lipídeos/fisiologia , Autofagia/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Blastocisto/metabolismo , Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Gravidez , Estresse Fisiológico/fisiologiaRESUMO
There is a current need for new biomarkers of spermatozoa quality, that consistently and correctly identify spermatozoa that will successfully contribute to subsequent embryo development. This could improve the standardization of semen analysis, decrease early embryo mortality, and use these biomarkers as a selection tool before servicing females. This study utilized imaging techniques to identify potential biomarkers of sperm quality, using sires previously classified as high (n = 4) or low (n = 4) performing at producing blastocysts in vitro. Spermatozoa were assessed before and following a gradient purification protocol, to understand how populations of cells are impacted by such protocols and may differ between in vivo and in vitro use. Pre-gradient samples from low-performing sires had an increased incidence of DNA damage, although post-gradient samples from high-performing sires were found to have an increased incidence of DNA damage. When evaluating morphology via fluorescent microscopy, the most prevalent defects in pre-gradient samples from high-performing sires were tail defects, which are successfully removed during purification processing. The most prevalent defects in pre-gradient samples from low-performing sires were aggresome defects located in the head, which would be brought into an oocyte upon fertilization and may impair embryo development. Image-based flow cytometry (IBFC) was employed to quantify defect prevalence to evaluate a greater sample size decreasing the variability that exists in manual assessments. Using IBFC, aggresome defects were again identified in the heads of spermatozoa from low-performing sires. Post-gradient samples from low-performing sires had a significantly greater (p < 0.05) incidence of aggresome defects than post-gradient samples from high-performing sires. Additionally, IBFC was used to evaluate spermatozoa viability following gradient purification. Distinct populations of sperm cells were identified. High-performing sires had more spermatozoa in the population deemed most viable than low-performing sires. This study demonstrated that spermatozoa defects vary in populations before and following gradient purification, indicating that it may be beneficial to separately evaluate semen for in vivo and in vitro use. Furthermore, a prevalent defect in low-performing sires that could explain a discrepancy between successful fertilization and embryo development was identified. Therefore, elucidating a malfunction regulated by sire, that could potentially affect early embryo development.