Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(21): e2300175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843265

RESUMO

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

2.
Small ; 18(43): e2107368, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35315576

RESUMO

Metal-sulfur batteries exhibit great potential as next-generation rechargeable batteries due to the low sulfur cost and high theoretical energy density. Sodium-sulfur (Na-S) batteries present higher feasibility of long-term development than lithium-sulfur (Li-S) batteries in technoeconomic and geopolitical terms. Both lithium and sodium are alkali metal elements with body-centered cubic structures, leading to similar physical and chemical properties and exposing similar issues when employed as the anode in metal-sulfur batteries. Indeed, some inspiration for mechanism researches and strategies in Na-S systems comes from the more mature Li-S systems. However, the dissimilarities in microscopic characteristics determine that Na-S is not a direct Li-S analogue. Herein, the daunting challenges derived by the differences of fundamental characteristics in Na-S and Li-S systems are discussed. And the corresponding strategies in Na-S batteries are reviewed. Finally, general conclusions and perspectives toward the research direction are presented based on the dissimilarities between both systems. This review attempts to provide important insights to facilitate the assimilation of the available knowledge on Li-S systems for accelerating the development of Na-S batteries on the basis of their dissimilarities.

3.
Small ; 18(30): e2200942, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35760758

RESUMO

The high capacity of Li-rich and Mn-based (LRM) cathode materials is originally due to the unique hybrid anion- and cation redox, which also induces detrimental oxygen escape. Furthermore, the counter diffusion of released oxygen (into electrolyte) and induced oxygen vacancies (into the interior bulk phase) that occurs at the interface will cause uncontrolled phase collapse and other issues. Therefore, due to its higher working voltage (>4.7 V) than the activation voltage of lattice oxygen in LRM (≈4.5 V), the anion-redox-free and structurally consistent cobalt-free LiNi0.5 Mn1.5 O4 (LNMO) is selected to in situ construct a robust, crystal-dense and lattice-matched oxygen-passivation-layer (OPL) on the surface of LRM particles by the electrochemical delithiation to protect the core layered components. As expected, the modified sample displays continuously decreasing interfacial impedance and high specific capacity of 135.5 mAh g-1 with a very small voltage decay of 0.67 mV per cycle after 1000 cycles at 2 C rate. Moreover, the stress accumulation during cycling is mitigated effectively. This semicoherent OPL strengthens the surface stability and interrupts the counter diffusion of oxygen and oxygen vacancies in LRM cathode materials, which would provide guidance for designing high-energy-density layered cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA