Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0137423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38251894

RESUMO

The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.


Assuntos
Bradyrhizobium , Glycine max , Percepção de Quorum/fisiologia , Fixação de Nitrogênio , Simbiose/fisiologia , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Transativadores/metabolismo , Nitrogênio/metabolismo
2.
Plant Cell Environ ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279510

RESUMO

Determining the differences in flower hydraulic traits and structural resource allocation among closely related species adapted to low mean annual precipitation (MAP) can provide insight into plant adaptation to arid environments. Here, we measured the maximum flower hydraulic conductance (Kmax-flower), water potential at induction 50% loss of Kmax-flower (P50-flower), flower pressure-volume parameters, dry mass of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) of six Caragana species growing in regions ranging from 110 to 1400 mm MAP. Compared with species from high-MAP environments, those from low-MAP environments presented lower Kmax-flower, more negative P50-flower, osmotic potential at full turgor (πo) and turgor loss points (πtlp), and a greater bulk modulus of elasticity (ε). Consequently, a negative correlation between Kmax-flower (hydraulic efficiency) and P50-flower (hydraulic safety) was observed across Caragana species. Furthermore, the dry masses of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) were greater in the species from the low-MAP environment than in those from the high-MAP environment. These findings suggest that greater flower hydraulic safety and drought tolerance combined with greater structural resource allocation promote drought adaptation in Caragana species to low-MAP environments.

3.
J Exp Bot ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367013

RESUMO

Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species (ROS), subsequent synthesis of nitric oxide (NO) and hydrogen sulfide (H2S), and SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid (JA)-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution and K+ deficiency, inhibit drought and ABA-induced stomatal closure through an ethylene synthesis dependent way. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, gaining a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.

4.
Plant Cell Environ ; 46(8): 2296-2309, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294176

RESUMO

While variation in mean annual precipitation (MAP) of the native habitat of a species has been shown to determine the ability of a species to resist a hydraulic decrease during drought, it remains unknown whether these variations in MAP also influence the ability of a species to recover and survive drought. Leaf hydraulic and gas exchange recovery following drought and the underlying mechanisms of these responses in six Caragana species from habitats along a large precipitation gradient were investigated during rehydration in a common garden. The gas exchange of species from arid habitats recovered more rapidly during rehydration after mild, moderate and severe drought stress treatments than species from humid habitats. The recovery of gas exchange was not associated with foliar abscisic acid concentration, but tightly related to the recovery of leaf hydraulic conductance (Kleaf ). The recovery of Kleaf was associated with the loss of Kleaf during dehydration under mild and moderate drought stress, and to leaf xylem embolism formation under severe drought stress. Results pointed to the different ability to recover in gas exchange in six Caragana species post-drought is associated with the MAP of the species in its native habitat.


Assuntos
Caragana , Água , Água/fisiologia , Secas , Folhas de Planta/fisiologia , Xilema/fisiologia
5.
Physiol Plant ; 175(2): e13903, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002824

RESUMO

Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Peróxido de Hidrogênio , Poliaminas , Estômatos de Plantas/fisiologia , Reguladores de Crescimento de Plantas , Arabidopsis/fisiologia
6.
Ecotoxicol Environ Saf ; 264: 115399, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639827

RESUMO

Physical thickness of low-density polyethylene (LDPE) films might determine the release rate of phthalic acid esters (PAEs) & structural integrity and affect production efficiency. However, this critical issue is still unclear and little reported. Aging effects were evaluated in LDPE films with the thickness of 0.006, 0.008, 0.010 and 0.015 mm in a maize field of irrigation region. The Scanning electron microscope (SEM) results showed that the proportion of damaged area (Dam) to total area of LDPE films was massively lowered with increasing thickness after aging. The highest and lowest Dam was 32.2% and 3.5% in 0.006 and 0.015 mm films respectively. Also, the variations in peak intensity of asymmetric & symmetrical stretching vibrations (ASVI & SSVI) were detected using Fourier transform infrared spectrum (FTIR), indicating that the declines in peak intensity tended to be slower with thickness. Interestingly, the declines in physical integrity were tightly associated with increasing exhalation rate of PAEs. Average releasing rate of PAEs was 38.2%, 31.4%, 31.5% and 19.7% in LDPE films from 0.006 to 0.015 mm respectively. Critically, thicker film mulching can lead to greater soil water storage at plough layer (SWS-PL) and better thermal status, accordingly harvesting higher economic benefit. Therefore, LDPE film thickening may be a solution to reduce environmental risk but improve production efficiency in arid region.


Assuntos
Luz , Polietileno , Solo , Vibração
7.
Plant Physiol ; 186(1): 782-797, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33620497

RESUMO

Abscisic acid (ABA) can induce rapid stomatal closure in seed plants, but the action of this hormone on the stomata of fern and lycophyte species remains equivocal. Here, ABA-induced stomatal closure, signaling components, guard cell K+ and Ca2+ fluxes, vacuolar and actin cytoskeleton dynamics, and the permeability coefficient of guard cell protoplasts (Pf) were analyzed in species spanning the diversity of vascular land plants including 11 seed plants, 6 ferns, and 1 lycophyte. We found that all 11 seed plants exhibited ABA-induced stomatal closure, but the fern and lycophyte species did not. ABA-induced hydrogen peroxide elevation was observed in all species, but the signaling pathway downstream of nitric oxide production, including ion channel activation, was only observed in seed plants. In the angiosperm faba bean (Vicia faba), ABA application caused large vacuolar compartments to disaggregate, actin filaments to disintegrate into short fragments and Pf to increase. None of these changes was observed in the guard cells of the fern Matteuccia struthiopteris and lycophyte Selaginella moellendorffii treated with ABA, but a hypertonic osmotic solution did induce stomatal closure in fern and the lycophyte. Our results suggest that there is a major difference in the regulation of stomata between the fern and lycophyte plants and the seed plants. Importantly, these findings have uncovered the physiological and biophysical mechanisms that may have been responsible for the evolution of a stomatal response to ABA in the earliest seed plants.


Assuntos
Ácido Abscísico/metabolismo , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transdução de Sinais , Gleiquênias/anatomia & histologia , Gleiquênias/fisiologia , Selaginellaceae/anatomia & histologia , Selaginellaceae/fisiologia , Vicia faba/anatomia & histologia , Vicia faba/fisiologia
8.
New Phytol ; 229(1): 230-244, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749703

RESUMO

Clarifying the coordination of leaf hydraulic traits with gas exchange across closely-related species adapted to varying rainfall can provide insights into plant habitat distribution and drought adaptation. The leaf hydraulic conductance (Kleaf ), stomatal conductance (gs ), net assimilation (A), vein embolism and abscisic acid (ABA) concentration during dehydration were quantified, as well as pressure-volume curve traits and vein anatomy in 10 Caragana species adapted to a range of mean annual precipitation (MAP) conditions and growing in a common garden. We found a positive correlation between Ψleaf at 50% loss of Kleaf (Kleaf P50 ) and maximum Kleaf (Kleaf-max ) across species. Species from low-MAP environments exhibited more negative Kleaf P50 and turgor loss point, and higher Kleaf-max and leaf-specific capacity at full turgor, along with higher vein density and midrib xylem per leaf area, and a higher ratio of Kleaf-max : maximum gs . Tighter stomatal control mediated by higher ABA accumulation during dehydration in these species resulted in an increase in hydraulic safety and intrinsic water use efficiency (WUEi ) during drought. Our results suggest that high hydraulic safety and efficiency combined with greater stomatal sensitivity triggered by ABA production and leading to greater WUEi provides drought tolerance in Caragana species adapted to low-MAP environments.


Assuntos
Caragana , Secas , Folhas de Planta , Água , Xilema
9.
New Phytol ; 230(5): 2001-2010, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33586157

RESUMO

Plants control water-use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well-watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.


Assuntos
Gleiquênias , Ácido Abscísico , Desidratação , Secas , Folhas de Planta , Estômatos de Plantas , Sementes , Água
10.
Plant Cell Environ ; 44(2): 399-411, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131059

RESUMO

Drought is a cyclical phenomenon in natural environments. During dehydration, stomatal closure is mainly regulated by abscisic acid (ABA) dynamics that limit transpiration in seed plants, but following rehydration, the mechanism of gas exchange recovery is still not clear. In this study, leaf water potential (ψleaf ), stomatal conductance (gs ), leaf hydraulic conductance (Kleaf ), foliar ABA level, ethylene emission rate in response to dehydration and rehydration were investigated in four Caragana species with isohydric (Caragana spinosa and C. pruinosa) and anisohydric (C. intermedia and C. microphylla) traits. Two isohydric species with ABA-induced stomatal closure exhibited more sensitive gs and Kleaf to decreasing ψleaf than two anisohydric species which exhibited a switch from ABA to water potential-driven stomatal closure during dehydration. Following rehydration, the recovery of gas exchange was not associated with a decrease in ABA level but was strongly limited by the degradation of the ethylene emission rate in all species. Furthermore, two anisohydric species with low drought-induced ethylene production exhibited more rapid recovery in gas exchange upon rehydration. Our results indicated that ethylene is a key factor regulating the drought-recovery ability in terms of gas exchange, which may shape species adaptation to drought and potential species distribution.


Assuntos
Caragana/fisiologia , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Sementes/fisiologia , Especificidade da Espécie , Água/metabolismo
11.
Plant Cell Environ ; 44(10): 3347-3357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327717

RESUMO

It has been suggested that a trade-off between hydraulic efficiency and safety is related to drought adaptation across species. However, whether leaf hydraulic efficiency is sacrificed for safety during woody resprout regrowth after crown removal is not well understood. We measured leaf water potential (ψleaf ) at predawn (ψpd ) and midday (ψmid ), leaf maximum hydraulic conductance (Kleaf-max ), ψleaf at induction 50% loss of Kleaf-max (Kleaf P50 ), leaf area-specific whole-plant hydraulic conductance (LSC), leaf vein structure and turgor loss point (πtlp ) in 1- to 13-year-old resprouts of the aridland shrub (Caragana korshinskii). ψpd was similar, ψmid and Kleaf P50 became more negative, and Kleaf-max decreased in resprouts with the increasing age; thus, leaf hydraulic efficiency clearly traded off against safety. The difference between ψmid and Kleaf P50 , leaf hydraulic safety margin, increased gradually with increasing resprout age. More negative ψmid and Kleaf P50 were closely related to decreasing LSC and more negative πtlp , respectively, and the decreasing Kleaf-max arose from the lower minor vein density and the narrower midrib xylem vessels. Our results showed that a clear trade-off between leaf hydraulic efficiency and safety helps C. korshinskii resprouts adapt to increasing water stress as they approach final size.


Assuntos
Fabaceae/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Fenômenos Biomecânicos , Clima Desértico , Fabaceae/crescimento & desenvolvimento
12.
Physiol Plant ; 172(2): 528-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33452683

RESUMO

Investigating plant morphological traits can provide insights into plant drought tolerance. To date, many papers have focused on plant hydraulic responses to drought during dehydration, but atmospheric water absorption by trichomes to mitigate drought stress by influencing leaf hydraulics in plant species that inhabit arid environments has been largely ignored. The experiment in this study was designed to assess how dew absorbed by leaf trichomes helps Caragana korshinskii withstand drought. The results showed that under a drought stress and dew (DS & D) treatment, C. korshinskii displayed a strong capacity to absorb dew with trichomes; exhibited slow decreases in leaf water potential (Ψleaf ), leaf hydraulic conductivity (Kleaf ), and gas exchange; experienced 50% Kleaf and gas exchange losses at lower relative soil water content levels than plants treated with drought stress and no dew (DS & ND); and experienced 50% Kleaf loss (Kleaf P50 ) at similar Ψleaf levels as DS & ND plants. Its congener C. sinica, which does not have leaf trichomes, displayed little ability to absorb dew under drought stress and did not show any remarkable improvement in the above parameters under the DS & D treatment. Our results indicated that leaf trichomes are important epidermal dew-uptake structures that assist in partially sustaining the leaf hydraulic assimilation system, mitigate the adverse effects of drought stress and contribute to the distribution of C. korshinskii in arid environments.


Assuntos
Caragana , Secas , Folhas de Planta , Tricomas , Água
13.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576299

RESUMO

γ-aminobutyric acid (GABA) is a non-protein amino acid involved in various physiological processes; it aids in the protection of plants against abiotic stresses, such as drought, heavy metals, and salinity. GABA tends to have a protective effect against drought stress in plants by increasing osmolytes and leaf turgor and reducing oxidative damage via antioxidant regulation. Guard cell GABA production is essential, as it may provide the benefits of reducing stomatal opening and transpiration and controlling the release of tonoplast-localized anion transporter, thus resulting in increased water-use efficiency and drought tolerance. We summarized a number of scientific reports on the role and mechanism of GABA-induced drought tolerance in plants. We also discussed existing insights regarding GABA's metabolic and signaling functions used to increase plant tolerance to drought stress.


Assuntos
Secas , Plantas/metabolismo , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo , Transpiração Vegetal , Transdução de Sinais
14.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208343

RESUMO

Ozone (O3) is a gaseous environmental pollutant that can enter leaves through stomatal pores and cause damage to foliage. It can induce oxidative stress through the generation of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) that can actively participate in stomatal closing or opening in plants. A number of phytohormones, including abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) are involved in stomatal regulation in plants. The effects of ozone on these phytohormones' ability to regulate the guard cells of stomata have been little studied, however, and the goal of this paper is to explore and understand the effects of ozone on stomatal regulation through guard cell signaling by phytohormones. In this review, we updated the existing knowledge by considering several physiological mechanisms related to stomatal regulation after response to ozone. The collected information should deepen our understanding of the molecular pathways associated with response to ozone stress, in particular, how it influences stomatal regulation, mitogen-activated protein kinase (MAPK) activity, and phytohormone signaling. After summarizing the findings and noting the gaps in the literature, we present some ideas for future research on ozone stress in plants.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Modelos Biológicos , Estômatos de Plantas/efeitos dos fármacos
15.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669463

RESUMO

Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Plantas/enzimologia , Plantas/metabolismo , Sumoilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
16.
Tree Physiol ; 43(6): 883-892, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36547259

RESUMO

Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.


Assuntos
Fraxinus , Estômatos de Plantas , Secas , Folhas de Planta , Água , Ácido Abscísico , Etilenos
17.
Nat Commun ; 14(1): 8457, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114555

RESUMO

Hyoscyamine and scopolamine (HS), two valuable tropane alkaloids of significant medicinal importance, are found in multiple distantly related lineages within the Solanaceae family. Here we sequence the genomes of three representative species that produce HS from these lineages, and one species that does not produce HS. Our analysis reveals a shared biosynthetic pathway responsible for HS production in the three HS-producing species. We observe a high level of gene collinearity related to HS synthesis across the family in both types of species. By introducing gain-of-function and loss-of-function mutations at key sites, we confirm the reduced/lost or re-activated functions of critical genes involved in HS synthesis in both types of species, respectively. These findings indicate independent and repeated losses of the HS biosynthesis pathway since its origin in the ancestral lineage. Our results hold promise for potential future applications in the artificial engineering of HS biosynthesis in Solanaceae crops.


Assuntos
Hiosciamina , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Vias Biossintéticas/genética , Tropanos/metabolismo , Escopolamina/metabolismo , Hiosciamina/genética , Hiosciamina/análise , Hiosciamina/metabolismo
18.
Trends Plant Sci ; 27(10): 955-957, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840482

RESUMO

Wang et al. recently showed that, in soybean (Glycine max), root nodule formation is induced by a light-triggered signal that moves from the upper part of the plant to the roots. This novel signaling process opens a new area of research aimed to optimize the carbon-nitrogen balance in plant-rhizobium symbiosis.


Assuntos
Fabaceae , Rhizobium , Carbono , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Simbiose
19.
J Plant Physiol ; 279: 153832, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257087

RESUMO

Plants secreted phytocytokine SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and its receptor PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) to counter abscisic acid (ABA)- and pathogen-induced stomatal closure (Liu et al.). This novel signaling process provides plants with a new strategy to increase immunity through disrupting an aqueous habitat for pathogen colonization.


Assuntos
Estômatos de Plantas , Transdução de Sinais , Estômatos de Plantas/fisiologia , Ácido Abscísico , Imunidade Vegetal , Plantas , Água
20.
Sci Total Environ ; 835: 155419, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483460

RESUMO

Terrestrial ecosystems are under threat by the co-occurring biodiversity loss and nitrogen (N) deposition. Awareness is growing that the stabilizing effects of plant diversity on productivity depend on environmental context, but it remains unknown about how the loss of plant functional groups and N deposition interactively influence species richness and community stability. Here we carried out an eight-year experiment of plant functional groups removal and N addition experiment in subalpine meadow. We found that the removal of plant functional groups and N addition interactively affected averaged plant species richness and community stability. Without N addition, the absence of forbs, but not other functional groups, significantly decreased average species richness and community stability through decreasing species asynchrony (i.e., asynchronous dynamics among species under fluctuating conditions). Under N addition, the absence of forbs, grasses and legumes all led to significant declines in average species richness, causing a decrease in community stability by decreasing species asynchrony, among which the absence of forbs had the greatest negative effects on community stability. Moreover, N addition reinforced the destabilizing effects caused by the loss of functional groups. Our findings show that the diverse forbs maintain plant community stability through asynchronous dynamics among species, especially under N deposition scenario. Therefore, we suggest that conservation and restoration of plant communities and their stability would benefit from a functional-group specific strategy by considering the largely ignored forb species, while helps guide conservation management efforts to reduce temporal variability for ecosystem service in the face of uncertain species extinction and N deposition scenarios.


Assuntos
Ecossistema , Nitrogênio , Biodiversidade , Biomassa , Pradaria , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA