Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Atmos Environ (1994) ; 315: 1-9, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38299035

RESUMO

Epidemiologic studies have consistently observed associations between fine particulate matter (PM2.5) exposure and premature mortality. These studies use air quality concentration information from a combination of sources to estimate pollutant exposures and then assess how mortality varies as a result of differing exposures. Health impact assessments then typically use a single log-linear hazard ratio (HR) per health outcome to estimate counts of avoided human health effects resulting from air quality improvements. This paper estimates the total PM2.5-attributable premature mortality burden using a variety of methods for estimating exposures and quantifying PM2.5-attributable deaths in 2011 and 2028. We use: 1) several exposure models that apply a wide range of methods, and 2) a variety of HRs from the epidemiologic literature that relate long-term PM2.5 exposures to mortality among the U.S. population. We then further evaluate the variability of aggregated national premature mortality estimates to stratification by race and/or ethnicity or exposure level (e.g., below the current annual PM2.5 National Ambient Air Quality Standards). We find that unstratified annual adult mortality burden incidence estimates vary more (e.g., ~3-fold) by HR than by exposure model (e.g., <10%). In addition, future mortality burden estimates stratified by race/ethnicity are larger than the unstratified estimates of the entire population, and studies that stratify PM2.5-attributable mortality HRs by an exposure concentration threshold led to substantially higher estimates. These results are intended to provide transparency regarding the sensitivity of mortality estimates to upstream input choices.

2.
Environ Sci Technol ; 56(2): 1202-1210, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34965106

RESUMO

Air pollution risk assessments typically estimate ozone-attributable mortality counts using concentration-response (C-R) parameters from epidemiologic studies that treat temperature as a potential confounder. However, some recent epidemiologic studies have indicated that temperature can modify the relationship between short-term ozone exposure and mortality, which has potentially important implications when considering the impacts of climate change on public health. This proof-of-concept analysis quantifies counts of temperature-modified ozone-attributable mortality using temperature-stratified C-R parameters from a multicity study in which the pooled ozone-mortality effect coefficients change in concert with daily temperature. Meteorology downscaled from two global climate models is used with a photochemical transport model to simulate ozone concentrations over the 21st century using two emission inventories: one holding air pollutant emissions constant at 2011 levels and another accounting for reduced emissions through the year 2040. The late century climate models project increased summer season temperatures, which in turn yields larger total counts of ozone-attributable deaths in analyses using temperature-stratified C-R parameters compared to the traditional temperature confounder approach. This analysis reveals substantial heterogeneity in the magnitude and distribution of the temperature-stratified ozone-attributable mortality results, which is a function of regional variability in both the C-R relationship and the model-predicted temperature and ozone.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Mudança Climática , Modelos Teóricos , Ozônio/análise , Temperatura
3.
Environ Health ; 20(1): 102, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517898

RESUMO

BACKGROUND: Much of the current evidence of associations between long-term PM2.5 and health outcomes relies on national or regional analyses using exposures derived directly from regulatory monitoring data. These findings could be affected by limited spatial coverage of monitoring data, particularly for time periods before spatially extensive monitoring began in the late 1990s. For instance, Pope et al. (2009) showed that between 1980 and 2000 a 10 µg/m3 reduction in PM2.5 was associated with an average 0.61 year (standard error (SE) = 0.20) longer life expectancy. That analysis used 1979-1983 averages of PM2.5 across 51 U.S. Metropolitan Statistical Areas (MSAs) computed from about 130 monitoring sites. Our reanalysis re-examines this association using modeled PM2.5 in order to assess population- or spatially-representative exposure. We hypothesized that modeled PM2.5 with finer spatial resolution provides more accurate health effect estimates compared to limited monitoring data. METHODS: We used the same data for life expectancy and confounders, as well as the same analysis models, and investigated the same 211 continental U.S. counties, as Pope et al. (2009). For modeled PM2.5, we relied on a previously-developed point prediction model based on regulatory monitoring data for 1999-2015 and back-extrapolation to 1979. Using this model, we predicted annual average concentrations at centroids of all 72,271 census tracts and 12,501 25-km national grid cells covering the contiguous U.S., to represent population and space, respectively. We averaged these predictions to the county for the two time periods (1979-1983 and 1999-2000), whereas the original analysis used MSA averages given limited monitoring data. Finally, we estimated regression coefficients for PM2.5 reduction on life expectancy improvement over the two periods, adjusting for area-level confounders. RESULTS: A 10 µg/m3 decrease in modeled PM2.5 based on census tract and national grid predictions was associated with 0.69 (standard error (SE) = 0.31) and 0.81 (0.29) -year increases in life expectancy. These estimates are higher than the estimate of Pope et al. (2009); they also have larger SEs likely because of smaller variability in exposure predictions, a standard property of regression. Two sets of effect estimates, however, had overlapping confidence intervals. CONCLUSIONS: Our approach for estimating population- and spatially-representative PM2.5 concentrations based on census tract and national grid predictions, respectively, provided generally consistent findings to the original findings using limited monitoring data. This finding lends additional support to the evidence that reduced fine particulate matter contributes to extended life expectancy.


Assuntos
Poluentes Atmosféricos/análise , Expectativa de Vida , Modelos Teóricos , Material Particulado/análise , Monitoramento Ambiental , Humanos , Estados Unidos
4.
Proc Natl Acad Sci U S A ; 115(38): 9592-9597, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181279

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Carga Global da Doença/estatística & dados numéricos , Doenças não Transmissíveis/mortalidade , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , Teorema de Bayes , Estudos de Coortes , Saúde Global/estatística & dados numéricos , Humanos , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Tempo
5.
Environ Sci Technol ; 54(21): 13370-13378, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086005

RESUMO

Macpherson et al. (2017) presented a mathematical programming model that identifies minimum-cost control strategies that reduce emissions regionally to meet ambient air quality targets. This project introduces the Cost And Benefit Optimization Tool for Ozone (CABOT-O3), which extends the previous model by updating emissions and air quality relationships, adding a health impacts module, and quantifying distributional impacts. The tool draws upon source apportionment photochemical air quality modeling to characterize the contribution of emissions reductions to ambient ozone concentrations across the contiguous United States. The health impacts analysis module estimates the change in the number and economic value of premature deaths using modeled changes in ozone levels resulting from the application of emission control strategies. These extensions allow us to evaluate strategies to attain ozone air quality standards at minimum cost or to maximize net benefit, while assessing the change in the distribution of health impacts. In a case study applied to stationary pollution sources, we find that, when compared to minimizing costs to meet a uniform ozone standard, maximizing net benefits results in greater emissions and ozone concentration reductions in some parts of the country and fewer in others. Our results highlight potential equity-efficiency trade-offs in designing air quality policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Modelos Teóricos , Ozônio/análise , Material Particulado/análise , Estados Unidos
6.
Environ Res ; 183: 109206, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035409

RESUMO

Ozone exposure is associated with higher risk of asthma-related emergency department visits. The meteorological conditions that govern ozone concentration are projected to be more favorable to ozone formation over much of the United States due to continued climate change, even as emissions of anthropogenic ozone precursors are expected to decrease by 2050. Our goal is to quantify the health benefits of a climate change mitigation scenario versus a "business-as-usual" scenario, defined by the United Nations Intergovernmental Panel on Climate Change Representative Concentration Pathways (RCPs) 4.5 and 8.5, respectively, using the health impact analytical program Benefits Mapping and Analysis Program - Community Edition (BenMAP - CE) to project the number of asthma ED visits in 2045-2055. We project an annual average of 3100 averted ozone-related asthma ED visits during the 2045-2055 period under RCP4.5 versus RCP8.5, with all other factors held constant, which translates to USD $1.7 million in averted costs annually. We identify counties with tens to hundreds of avoided ozone-related asthma ED visits under RCP4.5 versus RCP8.5. Overall, we project a heterogeneous distribution of ozone-related asthma ED visits at different spatial resolutions, specifically national, regional, and county levels, and a substantial net health and economic benefit of climate change mitigation.


Assuntos
Poluentes Atmosféricos , Asma , Serviço Hospitalar de Emergência , Ozônio , Asma/epidemiologia , Mudança Climática , Serviço Hospitalar de Emergência/estatística & dados numéricos , Humanos , Ozônio/toxicidade , Estados Unidos/epidemiologia
7.
Am J Public Health ; 108(S2): S151-S157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698094

RESUMO

OBJECTIVES: To demonstrate the benefits-mapping software Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE), which integrates local air quality data with previously published concentration-response and health-economic valuation functions to estimate the health effects of changes in air pollution levels and their economic consequences. METHODS: We illustrate a local health impact assessment of ozone changes in the 10-county nonattainment area of the Dallas-Fort Worth region of Texas, estimating the short-term effects on mortality predicted by 2 scenarios for 3 years (2008, 2011, and 2013): an incremental rollback of the daily 8-hour maximum ozone levels of all area monitors by 10 parts per billion and a rollback-to-a-standard ambient level of 65 parts per billion at only monitors above that level. RESULTS: Estimates of preventable premature deaths attributable to ozone air pollution obtained by the incremental rollback method varied little by year, whereas those obtained by the rollback-to-a-standard method varied by year and were sensitive to the choice of ordinality and the use of preloaded or imported data. CONCLUSIONS: BenMAP-CE allows local and regional public health analysts to generate timely, evidence-based estimates of the health impacts and economic consequences of potential policy options in their communities.


Assuntos
Poluição do Ar/efeitos adversos , Poluição do Ar/economia , Software , Poluentes Atmosféricos/efeitos adversos , Monitoramento Ambiental/métodos , Humanos , Mortalidade Prematura , Ozônio/efeitos adversos , Texas/epidemiologia
8.
Environ Sci Technol ; 52(15): 8095-8103, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004688

RESUMO

Incomplete information regarding emissions from oil and natural gas production has historically made it challenging to characterize the air quality or air pollution-related health impacts for this sector in the United States. Using an emissions inventory for the oil and natural gas sector that reflects information regarding the level and distribution of PM2.5 and ozone precursor emissions, we simulate annual mean PM2.5 and summer season average daily 8 h maximum ozone concentrations with the Comprehensive Air-Quality Model with extensions (CAMx). We quantify the incidence and economic value of PM2.5 and ozone health related effects using the environmental Benefits Mapping and Analysis Program (BenMAP). We find that ambient concentrations of PM2.5 and ozone, and associated health impacts, are highest in a handful of states including Colorado, Pennsylvania, Texas and West Virginia. On a per-ton basis, the benefits of reducing PM2.5 precursor emissions from this sector vary by pollutant species, and range from between $6,300 and $320,000, while the value of reducing ozone precursors ranges from $500 to $8,200 in the year 2025 (2015$).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Colorado , Humanos , Gás Natural , Material Particulado , Pennsylvania , Texas , Estados Unidos , West Virginia
9.
Environ Res ; 167: 506-514, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142626

RESUMO

BACKGROUND: Photochemical modeling can predict the level and distribution of pollutant concentrations over time, but is resource-intensive. Partly for this reason, there are few studies exploring the multi-year trajectory of the historical change in fine particle (PM2.5) levels and associated health impacts in the U.S. OBJECTIVES: We used a unique dataset of Community Multi-Scale Air Quality (CMAQ) model simulations performed for a subset of years over a decade-long period fused with observations to estimate the change in ambient levels of PM2.5 across the contiguous U.S. We also quantified the change in PM2.5-attributable health risks and characterized the level of risk inequality over this period. METHODS: We estimated annual mean PM2.5 concentrations in 2005, 2011 and 2014. Using log-linear and logistic concentration-response coefficients we estimated changes in the numbers of deaths, hospital admissions and other morbidity outcomes. Calculating the Gini coefficient and Atkinson Index, we characterized the extent to which PM2.5 attributable risks were shared equally across the population or instead concentrated among certain subgroups. RESULTS: In 2005 the estimated fraction of deaths due to PM2.5 was 6.1%. This estimated value falls to 4.6% by 2014. Every portion of the contiguous U.S. experiences a decline in the risk of PM-related premature death over the 10-year period. As measured by the Gini coefficient and Atkinson index, the level of PM mortality risk is shared more equally in 2014 than in 2005 among all subgroups. CONCLUSIONS: Between 2005 and 2014, the level of PM2.5 concentrations fall, and the risk of premature death, declined and became more equitably distributed across the U.S.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Humanos , Fatores Socioeconômicos , Estados Unidos/epidemiologia
10.
Environ Model Softw ; 104: 118-129, 2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29962895

RESUMO

A number of software tools exist to estimate the health and economic impacts associated with air quality changes. Over the past 15 years, the U.S. Environmental Protection Agency and its partners invested substantial time and resources in developing the Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE). BenMAP-CE is a publicly available, PC-based open source software program that can be configured to conduct health impact assessments to inform air quality policies anywhere in the world. The developers coded the platform in C# and made the source code available in GitHub, with the goal of building a collaborative relationship with programmers with expertise in other environmental modeling programs. The team recently improved the BenMAP-CE user experience and incorporated new features, while also building a cadre of analysts and BenMAP-CE training instructors in Latin America and Southeast Asia.

11.
Risk Anal ; 36(9): 1693-707, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26269141

RESUMO

The magnitude, shape, and degree of certainty in the association between long-term population exposure to ambient fine particulate matter (PM2.5 ) and the risk of premature death is one of the most intensely studied issues in environmental health. For regulatory risk analysis, this relationship is described quantitatively by a concentration-response (C-R) function that relates exposure to ambient concentrations with the risk of premature mortality. Four data synthesis techniques develop the basis for, and derive, this function: systematic review, expert judgment elicitation, quantitative meta-analysis, and integrated exposure-response (IER) assessment. As part of an academic workshop aiming to guide the use of research synthesis approaches, we developed criteria with which to evaluate and select among the approaches for their ability to inform policy choices. These criteria include the quality and extent of scientific support for the method, its transparency and verifiability, its suitability to the policy problem, and the time and resources required for its application. We find that these research methods are both complementary and interdependent. A systematic review of the multidisciplinary evidence is a starting point for all methods, providing the broad conceptual basis for the nature, plausibility, and strength of the associations between PM exposure and adverse health effects. Further, for a data-rich application like PM2.5 and premature mortality, all three quantitative approaches can produce estimates that are suitable for regulatory and benefit analysis. However, when fewer data are available, more resource-intensive approaches such as expert elicitation may be more important for understanding what scientists know, where they agree or disagree, and what they believe to be the most important areas of uncertainty. Whether implicitly or explicitly, all require considerable judgment by scientists. Finding ways for all these methods to acknowledge, appropriately elicit, and examine the implications of that judgment would be an important step forward for research synthesis.

12.
Risk Anal ; 36(9): 1718-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26742852

RESUMO

Designing air quality policies that improve public health can benefit from information about air pollution health risks and impacts, which include respiratory and cardiovascular diseases and premature death. Several computer-based tools help automate air pollution health impact assessments and are being used for a variety of contexts. Expanding information gathered for a May 2014 World Health Organization expert meeting, we survey 12 multinational air pollution health impact assessment tools, categorize them according to key technical and operational characteristics, and identify limitations and challenges. Key characteristics include spatial resolution, pollutants and health effect outcomes evaluated, and method for characterizing population exposure, as well as tool format, accessibility, complexity, and degree of peer review and application in policy contexts. While many of the tools use common data sources for concentration-response associations, population, and baseline mortality rates, they vary in the exposure information source, format, and degree of technical complexity. We find that there is an important tradeoff between technical refinement and accessibility for a broad range of applications. Analysts should apply tools that provide the appropriate geographic scope, resolution, and maximum degree of technical rigor for the intended assessment, within resources constraints. A systematic intercomparison of the tools' inputs, assumptions, calculations, and results would be helpful to determine the appropriateness of each for different types of assessment. Future work would benefit from accounting for multiple uncertainty sources and integrating ambient air pollution health impact assessment tools with those addressing other related health risks (e.g., smoking, indoor pollution, climate change, vehicle accidents, physical activity).

13.
Environ Res ; 143(Pt A): 19-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414085

RESUMO

Among industrialised countries, fine particle (PM2.5) and ozone levels in the Sydney metropolitan area of Australia are relatively low. Annual mean PM2.5 levels have historically remained below 8 µg/m(3) while warm season (November-March) ozone levels occasionally exceed the Australian guideline value of 0.10 ppm (daily 1 h max). Yet, these levels are still below those seen in the United States and Europe. This analysis focuses on two related questions: (1) what is the public health burden associated with air pollution in Sydney; and (2) to what extent would reducing air pollution reduce the number of hospital admissions, premature deaths and number of years of life lost (YLL)? We addressed these questions by applying a damage function approach to Sydney population, health, PM2.5 and ozone data for 2007 within the BenMAP-CE software tool to estimate health impacts and economic benefits. We found that 430 premature deaths (90% CI: 310-540) and 5800 YLL (95% CI: 3900-7600) are attributable to 2007 levels of PM2.5 (about 2% of total deaths and 1.8% of YLL in 2007). We also estimate about 630 (95% CI: 410-840) respiratory and cardiovascular hospital admissions attributable to 2007 PM2.5 and ozone exposures. Reducing air pollution levels by even a small amount will yield a range of health benefits. Reducing 2007 PM2.5 exposure in Sydney by 10% would, over 10 years, result in about 650 (95% CI: 430-850) fewer premature deaths, a gain of 3500 (95% CI: 2300-4600) life-years and about 700 (95% CI: 450-930) fewer respiratory and cardiovascular hospital visits. These results suggest that substantial health benefits are attainable in Sydney with even modest reductions in air pollution.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Saúde Pública/métodos , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Austrália , Cidades , Monitoramento Epidemiológico , Humanos , Morbidade/tendências , Mortalidade/tendências , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Saúde Pública/estatística & dados numéricos , Saúde Pública/tendências , Estações do Ano
14.
J Air Waste Manag Assoc ; 65(5): 570-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25947315

RESUMO

UNLABELLED: In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1-4°C and 1-5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$). IMPLICATIONS: Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1-5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).


Assuntos
Poluentes Atmosféricos/toxicidade , Mudança Climática , Exposição Ambiental , Ozônio/toxicidade , Doenças Respiratórias/economia , Doenças Respiratórias/epidemiologia , Poluentes Atmosféricos/normas , Exposição Ambiental/economia , Política Ambiental/economia , Previsões , Regulamentação Governamental , Humanos , Modelos Teóricos , Ozônio/normas , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/mortalidade , Estados Unidos/epidemiologia
15.
Epidemiology ; 25(6): 835-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25188557

RESUMO

BACKGROUND: Epidemiologic studies find that long- and short-term exposure to fine particles (PM2.5) is associated with adverse cardiovascular outcomes, including ischemic and hemorrhagic strokes. However, few systematic reviews or meta-analyses have synthesized these results. METHODS: We reviewed epidemiologic studies that estimated the risks of nonfatal strokes attributable to ambient PM2.5. To pool risks among studies we used a random-effects model and 2 Bayesian approaches. The first Bayesian approach assumes a normal prior that allows risks to be zero, positive or negative. The second assumes a gamma prior, where risks can only be positive. This second approach is proposed when the number of studies pooled is small, and there is toxicological or clinical literature to support a causal relation. RESULTS: We identified 20 studies suitable for quantitative meta-analysis. Evidence for publication bias is limited. The frequentist meta-analysis produced pooled risk ratios of 1.06 (95% confidence interval = 1.00-1.13) and 1.007 (1.003-1.010) for long- and short-term effects, respectively. The Bayesian meta-analysis found a posterior mean risk ratio of 1.08 (95% posterior interval = 0.96-1.26) and 1.008 (1.003-1.013) from a normal prior, and of 1.05 (1.02-1.10) and 1.008 (1.004-1.013) from a gamma prior, for long- and short-term effects, respectively, per 10 µg/m PM2.5. CONCLUSIONS: Sufficient evidence exists to develop a concentration-response relation for short- and long-term exposures to PM2.5 and stroke incidence. Long-term exposures to PM2.5 result in a higher risk ratio than short-term exposures, regardless of the pooling method. The evidence for short-term PM2.5-related ischemic stroke is especially strong.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Material Particulado/toxicidade , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/epidemiologia , Teorema de Bayes , Humanos , Fatores de Risco
16.
Environ Sci Technol ; 48(18): 10571-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25123711

RESUMO

We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and county wide intervention advisories were designed to occur when fine particulate matter (PM2.5) from smoke, forecasted 24 or 48 h in advance, was expected to exceed a predetermined threshold. Three different thresholds were considered in simulations, each with three different levels of adherence to the advisories. Interventions were simulated in the adult population susceptible to health exacerbations related to the chronic conditions of asthma and congestive heart failure. Associations between Emergency Department (ED) visits for these conditions and daily PM2.5 concentrations under each intervention were evaluated. Triggering interventions at lower PM2.5 thresholds (≤ 20 µg/m(3)) with good compliance yielded the greatest risk reduction. At the highest threshold levels (50 µg/m(3)) interventions were ineffective in reducing health risks at any level of compliance. The economic benefit of effective interventions exceeded $1 M in excess ED visits for asthma and heart failure, $2 M in loss of productivity, $100 K in respiratory conditions in children, and $42 million due to excess mortality.


Assuntos
Poluentes Atmosféricos/análise , Incêndios , Previsões , Insuficiência Cardíaca/economia , Material Particulado/análise , Doenças Respiratórias/economia , Adulto , Poluentes Atmosféricos/toxicidade , Criança , Custos e Análise de Custo , Serviço Hospitalar de Emergência , Feminino , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/prevenção & controle , Humanos , North Carolina , Material Particulado/toxicidade , Saúde Pública , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/mortalidade , Doenças Respiratórias/prevenção & controle , Risco , População Rural , Fumaça/efeitos adversos , Fumaça/análise
17.
Environ Epidemiol ; 8(1): e285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343733

RESUMO

Fine particle pollution is a well-established risk to human health. Observational epidemiology generally treats events as though they are independent of one another and so do not examine the role air pollution may play in promoting the progression of disease. Multistate survival models account for the complex pathway of disease to death. We employ a multistate survival model to characterize the role of chronic exposure to PM2.5 in affecting the rate at which Medicare beneficiaries transition to first hospitalization for cardiovascular disease and then subsequently death. We use an open cohort of Medicare beneficiaries and PM2.5 concentrations estimated with photochemical model predictions, satellite-based observations, land-use data, and meteorological variables. The multistate model included three transitions: (1) entry to cardiovascular hospital admission; (2) entry to death; and (3) cardiovascular hospital admission to death. The transition intensity was modeled using a Cox proportional hazards model. For a 1 µg/m3 increase in annual mean PM2.5, we estimate a nationally pooled hazard ratio of 1.022 (95% confidence interval [CI] = 1.018, 1.025) for the transition from entry to first cardiovascular hospital admission; 1.054 (95% CI = 1.039, 1.068) for the transition from entry to death; 1.036 (95% CI = 1.027, 1.044) for the transition from first cardiovascular hospital admission to death. The hazard ratios exhibited some heterogeneity within each of nine climatological regions and for each of the three transitions. We find evidence for the role of PM in both promoting chronic illness and increasing the subsequent risk of death.

18.
Environ Health Perspect ; 132(3): 37003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445893

RESUMO

BACKGROUND: Air pollution risk assessments do not generally quantify health impacts using multipollutant risk estimates, but instead use results from single-pollutant or copollutant models. Multipollutant epidemiological models account for pollutant interactions and joint effects but can be computationally complex and data intensive. Risk estimates from multipollutant studies are therefore challenging to implement in the quantification of health impacts. OBJECTIVES: Our objective was to conduct a case study using a developmental multipollutant version of the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to estimate the health impact associated with changes in multiple air pollutants using both a single and multipollutant approach. METHODS: BenMAP-CE was used to estimate the change in the number of pediatric asthma emergency department (ED) visits attributable to simulated changes in air pollution between 2011 and 2025 in Atlanta, Georgia, applying risk estimates from an epidemiological study that examined short-term single-pollutant and multipollutant (with and without first-order interactions) exposures. Analyses examined individual pollutants (i.e., ozone, fine particulate matter, carbon monoxide, nitrogen dioxide (NO2), sulfur dioxide, and particulate matter components) and combinations of these pollutants meant to represent shared properties or predefined sources (i.e., oxidant gases, secondary pollutants, traffic, power plant, and criteria pollutants). Comparisons were made between multipollutant health impact functions (HIF) and the sum of single-pollutant HIFs for the individual pollutants that constitute the respective pollutant groups. RESULTS: Photochemical modeling predicted large decreases in most of the examined pollutant concentrations between 2011 and 2025 based on sector specific (i.e., source-based) estimates of growth and anticipated controls. Estimated number of avoided asthma ED visits attributable to any given multipollutant group were generally higher when using results from models that included interaction terms in comparison with those that did not. We estimated the greatest number of avoided pediatric asthma ED visits for pollutant groups that include NO2 (i. e., criteria pollutants, oxidants, and traffic pollutants). In models that accounted for interaction, year-round estimates for pollutant groups that included NO2 ranged from 27.1 [95% confidence interval (CI): 1.6, 52.7; traffic pollutants] to 55.4 (95% CI: 41.8, 69.0; oxidants) avoided pediatric asthma ED visits. Year-round results using multipollutant risk estimates with interaction were comparable to the sum of the single-pollutant results corresponding to most multipollutant groups [e.g., 52.9 (95% CI: 43.6, 62.2) for oxidants] but were notably lower than the sum of the single-pollutant results for some pollutant groups [e.g., 77.5 (95% CI: 66.0, 89.0) for traffic pollutants]. DISCUSSION: Performing a multipollutant health impact assessment is technically feasible but computationally complex. It requires time, resources, and detailed input parameters not commonly reported in air pollution epidemiological studies. Results estimated using the sum of single-pollutant models are comparable to those quantified using a multipollutant model. Although limited to a single study and location, assessing the trade-offs between a multipollutant and single-pollutant approach is warranted. https://doi.org/10.1289/EHP12969.


Assuntos
Asma , Poluentes Ambientais , Criança , Humanos , Georgia/epidemiologia , Asma/epidemiologia , Oxidantes , Material Particulado
19.
Environ Int ; 185: 108416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394913

RESUMO

We evaluated the sensitivity of estimated PM2.5 and NO2 health impacts to varying key input parameters and assumptions including: 1) the spatial scale at which impacts are estimated, 2) using either a single concentration-response function (CRF) or using racial/ethnic group specific CRFs from the same epidemiologic study, 3) assigning exposure to residents based on home, instead of home and work locations for the state of Colorado. We found that the spatial scale of the analysis influences the magnitude of NO2, but not PM2.5, attributable deaths. Using county-level predictions instead of 1 km2 predictions of NO2 resulted in a lower estimate of mortality attributable to NO2 by âˆ¼ 50 % for all of Colorado for each year between 2000 and 2020. Using an all-population CRF instead of racial/ethnic group specific CRFs results in a 130 % higher estimate of annual mortality attributable for the white population and a 40 % and 80 % lower estimate of mortality attributable to PM2.5 for Black and Hispanic residents, respectively. Using racial/ethnic group specific CRFs did not result in a different estimation of NO2 attributable mortality for white residents, but led to âˆ¼ 50 % lower estimates of mortality for Black residents, and 290 % lower estimate for Hispanic residents. Using NO2 based on home instead of home and workplace locations results in a smaller estimate of annual mortality attributable to NO2 for all of Colorado by 2 % each year and 0.3 % for PM2.5. Our results should be interpreted as an exercise to make methodological recommendations for future health impact assessments of pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Colorado/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
20.
Environ Sci Technol ; 47(8): 3580-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23506413

RESUMO

Recent risk assessments have characterized the overall burden of recent PM2.5 and ozone levels on public health, but generally not the variability of these impacts over time or by sector. Using photochemical source apportionment modeling and a health impact function, we attribute PM2.5 and ozone air quality levels, population exposure and health burden to 23 industrial point, area, mobile and international emission sectors in the Continental U.S. in 2005 and 2016. Our modeled policy scenarios account for a suite of emission control requirements affecting many of these sectors. Between these two years, the number of PM2.5 and ozone-related deaths attributable to power plants and mobile sources falls from about 68,000 (90% confidence interval from 48,000 to 87,000) to about 36,000 (90% confidence intervals from 26,000 to 47,000). Area source mortality risk grows slightly between 2005 and 2016, due largely to population growth. Uncertainties relating to the timing and magnitude of the emission reductions may affect the size of these estimates. The detailed sector-level estimates of the size and distribution of mortality and morbidity risk suggest that the air pollution mortality burden has fallen over time but that many sectors continue to pose a substantial risk to human health.


Assuntos
Poluição do Ar/análise , Efeitos Psicossociais da Doença , Avaliação do Impacto na Saúde/tendências , Ar/análise , Eletricidade , Fontes Geradoras de Energia , Atividades Humanas , Humanos , Modelos Teóricos , Ozônio/análise , Material Particulado/química , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA