Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 472, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811894

RESUMO

Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.


Assuntos
Manitol , Tolerância ao Sal , Plântula , Trealose , Triticum , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/metabolismo , Trealose/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Manitol/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Flavonoides/metabolismo , Fenóis/metabolismo
2.
Sci Rep ; 14(1): 21373, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39266608

RESUMO

Salinity stress negatively affects the growth and yield of crops worldwide. Onion (Allium cepa L.) is moderately sensitive to salinity. Beneficial microorganisms can potentially confer salinity tolerance. This study investigated the effects of endomycorrhizal fungi (M), Pseudomonas putida (Ps) and their combination (MPs) on onion growth under control (0 ppm), moderate (2000 ppm) and high (4000 ppm) NaCl salinity levels. A pot experiment was conducted with sandy loam soil and onion cultivar Giza 20. Results showed that salinity reduced growth attributes, leaf pigments, biomass and bulb yield while increasing oxidative stress markers. However, individual or combined inoculations significantly increased plant height, bulb diameter and biomass production compared to uninoculated plants under saline conditions. MPs treatment provided the highest stimulation, followed by Pseudomonas and mycorrhizae alone. Overall, dual microbial inoculation showed synergistic interaction, conferring maximum benefits for onion growth, bulbing through integrated physiological and biochemical processes under salinity. Bulb yield showed 3.5, 36 and 83% increase over control at 0, 2000 and 4000 ppm salinity, respectively. In conclusion, combined application of mycorrhizal-Pseudomonas inoculations (MPs) effectively mitigate salinity stress. This approach serves as a promising biotechnology for ensuring sustainable onion productivity under saline conditions.


Assuntos
Cebolas , Pseudomonas putida , Salinidade , Pseudomonas putida/fisiologia , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/efeitos dos fármacos , Cebolas/microbiologia , Micorrizas/fisiologia , Biomassa , Estresse Salino , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Tolerância ao Sal , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA